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The multiscale challenge: the hydration shell

q Original motivation: how do we model the deviations from 
bulk behavior in the first layers of solvent?

q Can such a theory apply to mesoscopic systems e.g. colloids?
q This is true for pure water as well as electrolytes, organic 

solvents, ionic liquids, … 

These waters do not obey 
continuum electrostatics



The Basic Continuum Solvent Model 

Born, 1920; Kirkwood, 1934; Roux and Simonson, 1999

1. Inside the protein

2. Outside (assume the solvent is infinite)*

3. Boundary conditions at the interface

*To include solvent ions:

Protein

Water
Atom



Outline
q Not all multiscale models are created equal

q Hydration-shell Poisson-Boltzmann model

q HSPB applications and extensions

q Open questions and possible directions



Hydrogen bonds

• On protein length scales, water has finite size
• Water forms semi-structured h-bond networks

• Idea: test nonlocal continuum models like in mechanics (gradient 
theories) and electrodynamics (spatially dispersive media)

Beyond the continuum hypothesis: nonlocal models

Water molecules

Protein

Shu, Fleck, Needleman et al. 2001

Discrete dislocation Nonlocal plasticity

de	  Abajo	  ‘08Schatz	  et	  al.	  ‘01

Duan	  et	  al.	  ‘07



Supported	   by	  
experiments	  and	  
detailed	  
simulations

Local	  response

Wave	  number	  
(inverse	  distance)	  

qPolarization charge as a 
function of distance from the 
ion: not simple

o Short-range: electronic 
response

o Long-range: bulk behavior

qLocal: bulk everywhere

qNonlocal: simple function that 
captures asymptotes

Green’s	  
function	  for	  

Pictures from Hildebrandt, 2005

A simple nonlocal dielectric model

1.00.2 0.6
Distance from charge (nm)

Relative density of water oxygen 

Bulk densityIn
si

de
 io

n Oscillations violate 
continuum model



Local model Nonlocal model

q First fast BEM solver for proteins in nonlocal solvent

Bardhan	  and	  Hildebrandt,	   DAC	  ‘11

Nonlocality’s impact on the water electric potential



Nonlocal Results: New explanation for pKa controversy
Get realistic answers using experimental dielectric constant

Bardhan,	  J.	  Chem.	  Phys.	  2012



Are charge-burial prediction problems about 
flexibility or dielectric contrast?

Realistic parameters now give reasonable answers

Bardhan,	  J.	  Chem.	  Phys.	  2012

Unphysically large 
energy difference in 
standard model with 
reasonable
permittivity

Reasonable energy 
differences with 
standard model and 
unphysical permittivity

Reasonable energy 
differences with 
nonlocal model and 
physical permittivity



Adding more realism (the water oscillations)

Bardhan, JBMB ‘13
Cerutti ‘07 



Nonlocal models from Landau-Ginzburg theory

q Kornyshev LG theory leads to

q Medvedev added another coupling

Ren and Bardhan, in prep



First look: Poisson solvent with charge oscillations
Electrostatic potential for both:

Dirichlet boundary conditions

Displacement potential:
q Lorentz nonlocal model 

boundary conditions

q ad hoc boundary conditions

Electrostatic potential

Position



Difference between Kornyshev+Medvedev

Kornyshev

Medvedev



Temperature effects? Not so good.



Parameterizing using explicit-solvent MD
q Charging free-energy perturbation (FEP) calculations
Nonlocal models use correlation lengths from 2 to 40 Angstroms. 

o Small values (1-4 A) are appropriate for matching explicit solvent FEP
o BUT charge-sign asymmetry dominates for surface charges

d

Symbols: FEP



Known theory failure: hydration asymmetry

Lynden-Bell et al. ‘01

Easy solution for ions:
Adjust radii

But: the slope is not zero at q=0



Outline
q Not all multiscale models are created equal

q Hydration-shell Poisson-Boltzmann model

q HSPB applications and extensions

q Open questions and possible directions



Continuum model’s failure is simple for ions..

Easy solution for spheres:
Adjust their radii!

Atomistic simulations calibrated to 
within a few percent of experiment



.. And often hidden with lots of parameters

Nina, Beglov, Roux ‘97

After	  exhaustive	  fitting	  of	  atomic	  radii,	  the	  model	  works,	  sort	  of

y=x denotes exactly 
linear response

Relatively 
small 
deviation!

Ala: Neutral

Lys: Positive

Asp: Negative



Atomistic simulations as “computational microscope”

Cerutti, Baker, McCammon ’07; see also Garde et al., Onufriev et al.

1.Surface potential:
Liquid-vapor interface 
potential exists even in 
the absence of solute 
charge

2.Hydrogen-oxygen 
size difference: 
Protein surface charges 
see different “closest 
approaches” depending 
on their sign

Bardhan, Jungwirth, Makowski ‘12

Chloride (larger)

Sodium
(smaller)

q = 0 q = +1q = -1



Dissecting asymmetric solvation



The basic boundary-integral equation model
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+
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+ + + ++
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-

-- -

Tomasi,1981
Shaw, 1985
Zauhar, 1988



Key modeling step: Think of a Born ion.
Stop taking the boundary condition as a given…

Boundary	  
condition

Radius

DERIVED

Energy

GIVEN

From MD or 
experiment GIVEN

From macroscopic
dielectric theory

Note: written here for a 
spherical ion (the boundary 
integral operator simplifies 
due to symmetry)



…and ask, if the physically-based radius is the 
given, what is the boundary condition?

Boundary	  
condition

Radius

GIVEN

Energy

GIVEN

From MD or 
experiment DERIVED

More general expression



Atomistic calc’s

BIE for proposed nonlinear BC

BIE for standard Maxwell BC

Why boundary-integral equation modeling?

Bardhan and Knepley, J. Chem. Phys. (2014)

Small wonder that the PDE modelers didn’t 
come to this on their own!



Modifying the boundary condition



From more than 50 parameters to just 4!
q The NLBC model has only 4 fitting parameters:

1. α : magnitude of the asymmetry
2. β : width of the asymmetry transition
3. γ : water’s “intrinsic” orientational preference
4. ξ : uniform scaling factor applied to all MD radii

q Contrast to standard symmetric models:

q Our 4 parameters were fit against 52 un-
physically hard test problems covering 
asymmetric solvation

Mobley et al., 2008; Bardhan and Knepley, 2014



NLBC model is accurate for many hard problems

Mobley et al., 2008; Bardhan and Knepley, 2014

Neutral rod molecules

Fixed dipole moment

Neutral bracelets 

Strong opposing charges



Accurate Energies in Sphere

Charge at
center

Charge at
surface



Accurate Ion Energies

Reminder: NO
detailed atom-by-
atom radius 
parameterization!!



Returning to the pKa problem

Uncharged 
states

Charged 
states



Outline
q Not all multiscale models are created equal

q Hydration-shell Poisson-Boltzmann model

q HSPB applications and extensions

q Open questions and possible directions



Applications of original HSPB

1. Parameterization approaches

2. Test set of 500 small molecules (experiment + MD)

3. Single-atom charging free energies in amino acids



Test set of 500 small molecules
Parameterized asymmetric HSPB using 6 monovalent ions and 6 
amino-acid side chain analogues

Bardhan et al., in preparation; reference data from Mobley et al. 

Reminder: No atomic radii have been optimized

Note: Dominant errors are associated with oxygens.  Further investigation underway!



Single-atom charging free energies

q A more detailed window into the reaction potential operator

Standard PB: using Roux radii

HSPB: No radii fitted

Bardhan et al., in preparation

The standard PB theory obtains correct total 
solvation energies through compensating errors!



More on single-atom charging free energies
q Looking specifically at phenylalanine

Positive charging free energies are 
impossible in standard PB

Bardhan et al., in preparation



Extension: the Mean Spherical Approximation 
(MSA) defines a different HSPB

Bardhan et al. Mol. Phys. (in review)

Looking at the MSA expression for Born ion solvation free energy



HSPB+MSA=
Poisson-based solvation thermodynamics 

q And not just in protic solvents

Water at 298 K, 
using Shannon-Prewitt
radii

Acetonitrile at 298 K, 
using Shannon-Prewitt
radii



Temperature-dependent asymmetric HSPB

q Build on success of temp-dependent HSPB+MSA
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What does the new boundary condition miss?

q Still a single scale theory—no charge oscillations
q Can’t model actual dielectric saturation
q How should the NLBC results be analyzed in terms of 

solution thermodynamics?

Lynden-Bell et al. 2001

Does the small q region inform the 
width of the nonlinear transition 
region? 



Other future directions
q Obtain HSPB from volumetric models e.g. RISM?
q Incorporate into electronic structure methods (PCM)
q Adding a nonpolar term (SPT? Hummer’s info. theory?)
q Calibrate temperature and pressure dependence capability
q Solution specific electrolyte BC
q Implicit-solvent molecular dynamics via BEM-based GB
q Extensions for more sophisticated nonlinear BC functions



Future directions
Advancing a sustainable modeling framework

Biomolecular 
complexes

Linearized 
PB models

Protein 1 Protein 2

Explain Coulomb-
field approx.

Analytical solution of 
nonlocal model for sphere

GB-like fast nonlocal 
approximate model

Full nonlinear PB via 
boundary-integrals

Advanced PB models 
(Bikerman, etc.)

Fast GB-like nonlinear 
approximations

Dynamics: hybrid 
explicit/implicit, and fully 

implicit

Popular quantum methods couple 
to exactly our Poisson problem 

(“polarizable continuum model”)

Improved GB 
models

Coupling to fast, scalable 
algorithms 



A fast, rigorous Generalized Born

Number of panels

Approximate inverse

via interpolation

New discretization techniques reduce the 

size of B and Cà further speedup

Nystrom methods offer 
another order of magnitude 
(Knepley+Bardhan, 2015)

Popular heuristic model: Generalized Born



i

-‐1/2

-‐1/6

-‐1/10
Dominant	  energies	  come	  from	  
dominant	  modes:	  try	  to	  capture	  

dipole/quadrupole	  modes	  
approximately!

Mean absolute error: 4% !

Bardhan+Knepley,	   J.	  Chem.	  Phys.	  2011

Multiscale approximation methods
Result: A flexible fast approximation scheme

600 protein test set

Upper bounds

Lower bounds

We have proven
1. How to obtain upper and lower bounds 

(using the fact that the operator is 
quasi-Hermitian)

2. That the model is a deformation of the 
boundary condition

3. Eigenfunctions are exact in separable 
geometries



Multiscale approximation methods
Result: High accuracy under geometry variations 

q Example: sampling protein 
conformations from MD

q Key feature:
o Advance scale of simulation 

while preserving our ability to 
add detail to the forward 
model.

Example: neuropeptide 
met-enkephalin



SGB/CFA GBMV My approach

Comparing actual eigenvectors to approximate ones

Fancier ad hoc version
Still inaccurateSimple ad hoc fast approximation

Not accurate enough for regularization

Multiscale approximation methods
Details: PDE-regularizer vs. ad hoc models

Bardhan, 2008; Bardhan et a. 2009, 2011



Massive parallelism for free

PetFMM code of Yokota, Cruz, Barba, Knepley, Hamada

Parallel GPU FMM code

Picture courtesy T. Hamada

760 node GPU cluster

Uses existing scalable algorithmic primitives 

q Other BIBEE implementations have used
• FFTSVD (Altman and Bardhan et al., 2006, 2009): OpenMP
• Tree codes (Cooper, Barba, et al., in prep.): GPU



800	  Å

10	  copies

1	  copy 100	  copies

1000	  copies

q Applications in colloid and interface science, phase 
behavior in crowded solutions

1000	  lysozyme	  
molecules:	  model	  of	  
a	  concentrated	  
protein	  solution

Lysozyme:	  ~2K	  atoms,
~15K	  boundary	  elements

What can be done on a GPU-based workstation?

Yokota, Bardhan, et al. 2009



Boundary integrals: Now more than ever

Experiments

PDE-based models

Solvers
Scalable 

algorithmic 
primitives

Computational 
experiments

Boundary-
integral models
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A totally insane idea:
Piecewise-linear response

q Charging Na between -2 and +2

Bardhan+Jungwirth, unpublished

Covered by asymmetric HSPB

Additional NLBC at 
Stern layer


