Quasiparticle dynamics and interactions in non-uniformly polarizable solids

Mona Berciu

University of British Columbia

- ightarrow beautiful physics that George Sawatzky has been pursuing for a long time
- \rightarrow today, example is of iron-pnictides (FeAs) and iron-chalcogenides (FeSe)
- \rightarrow references:
 - G. Sawatzky, I. Elfimov, J. van den Brink and J. Zaanen, EPL 86, 17006 (2009)
 - M. Berciu, I. Elfimov and G. Sawatzky, PRB 79, 214507 (2009)

~1997: discovery of high-temperature superconducting cuprates

Common elements:

 \rightarrow planar CuO₂ layers

~1997: discovery of high-temperature superconducting cuprates

- \rightarrow planar CuO₂ layers
- \rightarrow Similar phase diagrams upon doping with holes
- → Mechanism still not understood ...

~2008: discovery of high-temperature superconducting iron-pnictides/chalcogenides

Images from wikipedia: https://commons.wikimedia.org/w/index.php?curid=40347835

Common elements:

- \rightarrow (quasi)-planar FePn layers (from now on, anion is taken to be As)
- \rightarrow Phase diagrams somewhat similar to cuprates
- \rightarrow Immediate assumption by part of the community: the physics must be the same!

Similarities between CuO₂ and FeAs layers:

- 1. undoped parent compound: O 2p and As 4p shells are filled, while Cu $3d^9$ and Fe $3d^6 \rightarrow$ valence electrons are in partially filled 3d shell (hence magnetic properties expected)
- 2. both Cu and Fe are on planar square lattices
- 3. both Cu and Fe are in between 4 different anions ...

Differences between CuO₂ and FeAs layers:

1. Fe is inside octahedron of 4 As, while Cu is between 4 in-plane O

FeAs layer, top view

Differences between CuO₂ and FeAs layers:

- 1. Fe is inside octahedron of 4 As, while Cu is between 4 in-plane O
- Because of different geometry + much smaller 2p O as compared to 4p As orbitals → while Cu and ligand O2p hybridize strongly, in FeAs all levels close to Fermi energy have almost pure Fe character

Differences between CuO₂ and FeAs layers:

- 1. Fe is inside octahedron of 4 As, while Cu is between 4 in-plane O
- Because of different geometry + much smaller 2p O as compared to 4p As orbitals → while Cu and ligand O2p hybridize strongly, in FeAs all levels close to Fermi energy have almost pure Fe character.
- Also: large O-O overlap → wide O 2p band, which hosts the doped holes (charge transfer insulator). Whereas long As-As distance → very narrow band, far from Ef, so the doped carriers go in the Fe 3d states.
- 4. Cu U_{dd} very large \rightarrow strongly correlated insulator if undoped, while Fe U_{dd} is rather small \rightarrow poor metal even when undoped

Q: Why is Fe U_{dd} screened so much more than Cu U_{dd} ?

Are the As doing anything at all?!

Q: How to model doped FeAs layer (e on top of the Fe: 3d⁶ As: 4p⁶ in the parent compound)?

A: DFT tells us that all states within 2eV of E_F are of Fe nature, so we can use a Hubbard-like Hamiltonian for 3d Fe placed on square lattice, and argue whether we should use 2 or 5 bands, and whether U large or small, etc.

$$\mathcal{H}_{\rm Fe} = -\sum_{i,j,\sigma} \left(t_{ij} c_{i,\sigma}^{\dagger} c_{j,\sigma} + h.c. \right) + U_H \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

We take t ~ 0.25eV (DFT), t'= -t/2 or 0, and U_H ~ 10eV because 3d levels have large U

However, little hybridization between Fe with As, and As bands far from Ef
→ we can totally ignore the As so far as electronic properties are concerned, right?

Q: How to model doped FeAs layer (e on top of the Fe: 3d⁶ As: 4p⁶ in the parent compound)?

A: DFT tells us that all states within 2eV of E_F are of Fe nature, so we can use a Hubbard-like Hamiltonian for 3d Fe placed on square lattice, and argue whether we should use 2 or 5 bands, and whether U large or small, etc.

$$\mathcal{H}_{\rm Fe} = -\sum_{i,j,\sigma} \left(t_{ij} c_{i,\sigma}^{\dagger} c_{j,\sigma} + h.c. \right) + U_H \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

We take t ~ 0.25eV (DFT), t'= -t/2 or 0, and $U_H \sim 10eV$ because 3d levels have large U

However, little hybridization between Fe with As, and As bands far from Ef
→ we can totally ignore the As so far as electronic properties are concerned, right?

WRONG!

A: full 4p orbitals, large gap to empty 5s orbitals \rightarrow very "fat" spherical distribution of charge.

Q: What happens when we put extra charges (doped electrons) in its vicinity?

A: The additional electric field will polarize the charge cloud, it will no longer be spherical \rightarrow dipole moment p created, energy is lowered

A: full 4p orbitals, large gap to empty 5s orbitals \rightarrow very "fat" spherical distribution of charge.

Q: What happens when we put extra charges (doped electrons) in its vicinity?

A: The additional electric field will polarize the charge cloud, it will no longer be spherical \rightarrow dipole moment p created, energy is lowered

Semi-classical picture: R Ε q 0 perturbed As ion unperturbed As ion $\vec{p} = \alpha \vec{E}$ $\alpha = \text{ polarizability } \propto V$ $W \sim -\vec{p} \cdot \vec{E} = -\frac{1}{2}\alpha \vec{E}^2$ Note: $\vec{E} = \frac{q\vec{e}}{R^2}$ is determined by lattice geometry

A: full 4p orbitals, large gap to empty 5s orbitals \rightarrow very "fat" spherical distribution of charge.

Q: What happens when we put extra charges (doped electrons) in its vicinity?

A: The additional electric field will polarize the charge cloud, it will no longer be spherical \rightarrow dipole moment p created, energy is lowered

Quantum picture (very atomistic, but justified given narrow As bands)

Electron from p orbital parallel to E is excited into s orbital,charge distribution is deformed \rightarrow induced dipole moment

A: full 4p orbitals, large gap to empty 5s orbitals \rightarrow very "fat" spherical distribution of charge.

Q: What happens when we put extra charges (doped electrons) in its vicinity?

A: The additional electric field will polarize the charge cloud, it will no longer be spherical \rightarrow dipole moment p created, energy is lowered

Quantum picture: use hole operators instead!

E, charge distribution is deformed \rightarrow induced dipole moment

4p

5s

Model Hamiltonian:

 \rightarrow use a single band for Fe, for simplicity

$$\mathcal{H}_{\rm Fe} = \hat{T} + \hat{T}' + U_H \sum_i \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

$$\mathcal{H}_{\mathrm{As}} = \Omega \sum_{i,\lambda,\sigma} p_{i,\lambda,\sigma}^{\dagger} p_{i,\lambda,\sigma}$$

 \rightarrow for simplicity, assume that only the 4 nn As are polarized (E falls off like 1/R²)

$$\mathcal{H}_{\text{int}} = g \sum_{i,\sigma} \hat{n}_i \left[s_{i,\sigma}^{\dagger} \left(-\sin \theta p_{i,2,\sigma} + \cos \theta p_{i,3,\sigma} \right) \right. \\ \left. + s_{i-x,\sigma}^{\dagger} \left(\sin \theta p_{i-x,1,\sigma} + \cos \theta p_{i-x,3,\sigma} \right) \right. \\ \left. + s_{i-x-y,\sigma}^{\dagger} \left(\sin \theta p_{i-x-y,2,\sigma} + \cos \theta p_{i-x-y,3,\sigma} \right) \right. \\ \left. + s_{i-y,\sigma}^{\dagger} \left(-\sin \theta p_{i-y,1,\sigma} + \cos \theta p_{i-y,3,\sigma} \right) + h.c. \right]$$

 \rightarrow ignore dipole-dipole interactions for As

The consequences of these approximations are discussed later

Single polaron results

We use first order perturbation theory in T, justified because that energy scale is much smaller than the distance to first set of excited states:

0th order: electron can be at any site, with 4 nn As polarized \rightarrow electronic polaron

$$\begin{split} |\Phi_i\rangle &= c_i^{\dagger}|i\rangle \\ |i\rangle &= \prod_{\sigma} \gamma_{i,2,-,\sigma}^{\dagger} \gamma_{i-x,1,+,\sigma}^{\dagger} \gamma_{i-x-y,2,+,\sigma}^{\dagger} \gamma_{i-y,1,-,\sigma}^{\dagger} \prod_{|j-i|>1} s_{j\sigma}^{\dagger}|0\rangle \\ E_{P,GS} &= 4E_{\text{cloud}} = 4\left(\Omega - \sqrt{\Omega^2 + 4g^2}\right) \end{split}$$

1st order:

$$|\Phi_{\vec{k}}\rangle = \sum_{i} \frac{e^{ik \cdot R_{i}}}{N} |\Phi_{i}\rangle \qquad E_{P}(\vec{k}) = E_{P,GS} + \langle \Phi_{\vec{k}} | \hat{T}_{\text{tot}} | \Phi_{\vec{k}}\rangle$$
$$E_{P}(\vec{k}) = E_{P,GS} - 2t_{\text{eff}} \left[\cos(k_{x}a) + \cos(k_{y}a) \right] - 4t_{\text{eff}}' \cos(k_{x}a) \cos(k_{y}a)$$

$$t_{\text{eff}} = t\langle i|i+x\rangle;$$
 $t'_{\text{eff}} = t'\langle i|i+x+y\rangle$

Typical polaronic effect: heavier quasiparticle because of the dressing cloud

Single polaron results (cont'd)

Qp mass enhancement is very moderate, by a factor of 2-3

- → In agreement with ARPES data which shows bands about 2.2 times narrower than DFT predictions, eg. D. H. Lu et al, Nature 455, 81 (2008)
- \rightarrow Note: a multi-band dispersion would be renormalized by precisely the same amount
- → A posteriori justification for perturbation theory: gap to excited states is Ω ~ 6eV, while qp bandwidth is ~0.5eV

Bi-polaron results \rightarrow introduce two carriers and see what happens

Again, use perturbation theory in T.

To 0th order, eigenstates have localized electrons with various clouds surrounding them:

 \rightarrow If n > 2, no overlap between clouds:

$$E_{BP,n>2} = 2 \times E_{P,GS} = 8 \left[\Omega - \sqrt{\Omega^2 + 4g^2} \right]$$

 \rightarrow If n=2 \rightarrow one As shared by both clouds

If n=1 \rightarrow two As shared by both clouds

$$U_1 = E_{BP,1} - E_{BP,\infty}$$

 \rightarrow If n=0 \rightarrow all 4 As shared by both clouds, but each is polarized more strongly

$$U_0 = U_H + E_{BP,0} - E_{BP,\infty}$$

(of course, bare repulsion can be longer range as well)

- \rightarrow U₀ screened considerably
 - -- typical polaronic behavior
 - -- explains lack of corrrelations
- \rightarrow U₁ is attractive!
- \rightarrow U₂ is repulsive
- → Bound nn pair!!!! (pairing glue?)

Q: 1. why this non-monotonic behavior of the effective interactions mediated by the clouds (i.e., inhomogeneous polarizable environment)

2. do bipolaron solutions survive if T is turned on, and how heavy are they?

A1: at semi-classical level, energy is lowered by $W = -\frac{1}{2}\alpha \vec{E}^2$ controlled by applied electric field

If an As interacts simultaneously with two charges:

$$W = -\frac{1}{2}\alpha(\vec{E}_{1} + \vec{E}_{2})^{2} = W_{1} + W_{2} + W_{int}$$
$$W_{int} = -\alpha\vec{E}_{1} \cdot \vec{E}_{2} = -\alpha E_{1}E_{2}\cos(\theta_{12})$$

- → The sign of W_{int} is controlled by geometry (lattice structure)! Ih both charges on same site, then $\theta=0$ → always attraction. In FeAs structure, this angle < 90 for nn, > 90 for nnn.
- → Quantum model backs up these results unless g becomes very large and non-linear effects cannot be ignored
- → One might be able to play some interesting games by properly placing polarizable atoms in suitable locations ... and this is a class of materials where this is happening!

A2: again, do perturbation theory in T. This time, many possible Bloch states!

$$|\vec{k},\vec{\delta}\rangle = \sum_{i} \frac{e^{i\vec{k}\cdot(\vec{R}_{i}+\frac{\vec{\delta}}{2})}}{N} s^{\dagger}_{i,i+\vec{\delta}}|i,i+\vec{\delta}\rangle.$$

 \rightarrow Need to compare many effective hoppings beside the effective interactions:

A2: Bipolarons survive for arbitrarily large U_H.

As U_H increases, S0 \rightarrow S1 crossover. For U_H > 10eV, results independent of its value Also note higher energy state with d-wave symmetry These results are for t'=0

A2: Stable bipolarons in the limit $U_H \rightarrow \infty$

 \rightarrow d-state pair has primarily nn character \rightarrow favored by addition of t'

- \rightarrow Inclusion of t' also increases binding energy considerably
- \rightarrow Bipolaron has considerable dispersion \rightarrow (fairly) mobile, light object!

A2: Stable and rather light bipolarons in the limit $U_H \rightarrow \infty$

full lines: t' = 0dashed lines: $t' \neq 0$

Discussion:

- → Effective interactions due to polarization clouds can be strongly attractive at longer-range, not just on-site → rather light bipolarons of either s- or d-wave symmetry could form in these materials
- → This would suggest a "pre-formed pair" mechanism closer to BEC, not BCS-like superconductivity
- \rightarrow But we ignored:
 - -- multi-band nature: stable bipolarons expected to survive, all else being equal
 - -- dipole-dipole interaction \rightarrow would raise total energies, so unfavorable to binding
 - -- longer-range polarization \rightarrow favors attraction, favorable to binding (and probably winning)

-- longer-range Coulomb repulsion (longer-range analog of U_H): if large enough will unbind the bipolaron. Still, the effective cloud-mediated attraction may then be a BCS-like glue.

G. Sawatzky et al, EPL 86, 17006 (2009)

 \rightarrow Correlation between T_c and U₁!

Fig. 4: The superconducting transition temperature $T_{\rm c}$ of various iron and nickel-pnictide superconductors vs. the computed inverse screening energy $E_{\rm scr} = \alpha e^2 (\cos \Theta) / R^4$ of the nearest-neighbor Coulomb interaction, suggesting the presence of superconductivity with a higher $T_{\rm c}$ in materials with larger electronic screening energy $E_{\rm scr}$. R is Fe-As bond length, α the electronic polarizability $(\alpha_{As} = 10 \text{ Å}^3, \alpha_P = 9 \text{ Å}^3)$, and Θ is the Fe-As-Fe bond angle. The solid line is a guide to the eye. The data points represent the following materials: (1) LaONiAs [40]; (2) LaONiP [41]; (3) $BaNi_2P_2$ [42]; (4) LaONiP [43]; (5) LaOFeP [44]; (6) LaOFe_{0.89}Co_{0.11}As [45];(7)LiFeAs [46];(8) $LaO_{0.92}F_{0.08}FeAs$ [47];(9) $LaO_{0.92}F_{0.08}FeAs$ [19]; (10) $LaO_{0.87}F_{0.13}FeAs$ [48]; $CeO_{0.84}F_{0.16}FeAs$ [49]; (12) $Ba_{0.6}K_{0.4}Fe_2As_2$ (11)[9]; $TbO_{0.9}F_{0.1}FeAs$ [50]; (13)(14) $NdO_{0.8}F_{0.2}FeAs$ [51];(15) $PrO_{0.85}F_{0.15}FeAs$ [52].

Discussion:

- → Effective interactions due to polarization clouds can be strongly attractive at longer-range, not just on-site → rather light bipolarons of either s- or d-wave symmetry could form in these materials
- → This would suggest a "pre-formed pair" mechanism closer to BEC, not BCS-like superconductivity
- \rightarrow But we ignored:
 - -- multi-band nature: stable bipolarons expected to survive, all else being equal
 - -- dipole-dipole interaction \rightarrow would raise total energies, so unfavorable to binding
 - -- longer-range polarization \rightarrow favors attraction, favorable to binding (and probably winning)

-- longer-range Coulomb repulsion (longer-range analog of U_H): if large enough will unbind the bipolaron. Still, the effective cloud-mediated attraction may then be a BCS-like glue.

→ One could argue that in the end, we are back to an effective "electronic" Hamiltonian, so we're not doing anything very different compared to those who just study a generalized Hubbard model

Discussion:

- → Effective interactions due to polarization clouds can be strongly attractive at longer-range, not just on-site → rather light bipolarons of either s- or d-wave symmetry could form in these materials
- → This would suggest a "pre-formed pair" mechanism closer to BEC, not BCS-like superconductivity
- \rightarrow But we ignored:
 - -- multi-band nature: stable bipolarons expected to survive, all else being equal
 - -- dipole-dipole interaction \rightarrow would raise total energies, so unfavorable to binding
 - -- longer-range polarization \rightarrow favors attraction, favorable to binding (and probably winning)

-- longer-range Coulomb repulsion (longer-range analog of U_H): if large enough will unbind the bipolaron. Still, the effective cloud-mediated attraction may then be a BCS-like glue.

 \rightarrow One could argue that in the end, we are back to an effective "electronic" Hamiltonian, so we're not doing anything very different compared to those who just study a generalized Hubbard model.

But: we provide a microscopic origin (and estimates) for these terms.

 \rightarrow Similarities with Little and with Allender, Bray and Bardeen models, but there polaronic effects are used to overscreen on-site interaction. This requires very strong coupling \rightarrow very heavy (bi)polarons

Conclusion:

- → Possible route to engineer size and sign of effective interactions between carriers by placing large, polarizable ions in the right positions
- \rightarrow Large effects possible, plus non-monotonic dependence of distance
- \rightarrow Away from linear regime, three- and multiple-particle interactions could be considerable!
- \rightarrow ... lots of possibilities for interesting physics ...

Conclusion:

- → Possible route to engineer size and sign of effective interactions between carriers by placing large, polarizable ions in the right positions
- \rightarrow Large effects possible, plus non-monotonic dependence of distance
- \rightarrow Away from linear regime, three- and multiple-particle interactions could be considerable!
- \rightarrow ... lots of possibilities for interesting physics ...

Thank you!