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• Phenomenological derivation of PB

• Introduction to Statistical Field-Theory for 
Coulombic systems

• Steric effects

• The dipolar solvent

• Short range interactions

• Hydration of biopolymers

• SAXS profiles

• Fluctuations:  Sampling the partition function



Coulombic systems and biology

• Biopolymers are charged (DNA, RNA, 
proteins)

• Water is the solvent (dipolar)

• Salts and small ions in solution, in channels

• Membranes may be charged 

Important to understand properties of systems with 
Coulombic interactions: electrolytes, 

polyelectrolytes, colloids, aggregation, amyloids,etc…

Coulomb interaction drives shape, function,
interaction, organization, etc. of living matter



• MD simulations require hundred of 
thousands of water molecules, ions, etc…

• relaxation time of small ions and molecules 
<< relaxation times of biopolymers

• can one simplify the picture by avoiding 
simulation of small ions and molecules?



Consider a system of charges in a 
solution with dielectric constant     

molecules of charge Ni qie
"

Poisson equation: �r2'(~r) =
⇢c(~r)

"

where          is the electrostatic potential'(~r)

and                is the charge density⇢c(~r)

At thermodynamical equilibrium, the charge density is 
given by the sum of the fixed charges and a Boltzmann
distribution

fixed charges

⇢c(~r) = ⇢f (~r) +
X

i

Niqie
e��qie'(~r)
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dielectric
constant

Fixed charges ⇢f (~r)



where

In an infinite neutral system: Zi = V

�r2'(~r) =
⇢f (~r)

"
+

X

i

ciqie
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e��qie'(~r)

Example: (1:1) salt

concentration of ion i

Poisson-Boltzmann equation

�r2'(~r) =
⇢f (~r)
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sinh(�e'(~r))
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Z
d3re��qie'(~r)



Poisson-Boltzmann
• Very non-linear partial differential equation 

(PDE)

• Very few cases are analytically solvable 

• a charged plane with counterions (double 
layer problem: Gouy-Chapmann) or salt

• a charged cylinder with counterions 
(Manning condensation)

• a charged cylinder with salt (implicit very 
complicated solution)

• Usually must resort to numerical solution



What is absent from PB

• Steric effects: ions are supposed to be point-
like

• Water has no structure. It is a continuous 
medium. Necessary to treat is as dipoles

• Non Electrostatic interactions of water 
molecules.

• PB is mean-field: may need to include 
fluctuations.

• no overcharging, no same charge 
attraction



Natural framework to generalize 
Poisson-Boltzmann: 

Statistical Field Theory of 
Coulombic systems.



Why Field-Theory?

• Exact Statistical Mechanics formulation of 
Coulombic liquids

• Derivation of Mean-Field theories

• Calculation of fluctuations to all orders

• Non-perturbative approaches, Monte Carlo,
…



Statistical Physics of 
charges and dipoles
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The canonical partition function ZN of this system can be written as

ZN =
1

N !
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where h is the Planck constant, and vc denotes the Coulomb potential

vc(r) =
1

4⇡"0r
(14.3)

which satisfies the Poisson equation

�vc(r) = ��(r)

"0
(14.4) poisson

where � denotes the Laplacian operator.
The integral over the momenta pi is Gaussian and can be performed using

the formulae in appendix (??) yielding
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�3N
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where �, given by

� =

✓
2⇡mkBT

h2

◆ 1
2

(14.6)

is the inverse of the de Broglie thermal length.
Electrolyte solutions are often in contact with reservoirs of ions, and it is

thus more convenient to model these systems in the grand-canonical rather
than in the canonical ensemble. In the present case, defining by µ the chem-
ical potential of the ions, and by � their fugacity

� = �3e�µ (14.7) fugacity
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14.2 General formulation of the Field Theory 193

the change of variable is very general and can be used for multi-dimensional,
or even infinite dimensional integrals.

Consider now the case of mobile ions. We wish to express the partition
function (14.5) in terms of the charge density or electrostatic potential fields.
To do so, we will generalize the above method to the infinite dimensional
case.

For any configuration {ri} of the ions, the charge density field ⇢(r) can
be defined as

⇢(r) = qe
NX

i=1

�(r� ri) + ⇢f (r) (14.16) density

where ⇢f (r) is the charge density of the fixed charges.
As shown above, the easy way to perform the change of variables from

the particle coordinates {ri} to the charge density field ⇢(r), is to enforce
the relation (14.16) with a delta function at each point r of space.

For any function f({ri}), we have indeed the simple identity

Z NY

i=1

d3rif({ri}) =
Z

D⇢(r)

Z NY

i=1

d3ri

⇥
Y

r

�

 
⇢(r)� qe

NX

i=1

�(r� ri)� ⇢f (r)

!
f({ri})(14.17)

The symbol D⇢(r) represents the integral over all field ⇢(r) configurations.
It is to be understood in the following way. Assume that the space is dis-
cretized on a lattice L of points {r(k)}. Denoting the value of the charge
density on the lattice points by ⇢k = ⇢(r(k)), the measure must be inter-
preted as

D⇢(r) =
Y

{r(k)}2L

d⇢k (14.18) measure

Note that the process of taking the continuous limit in Eq.(14.18) may be
non-trivial and may lead to the appearance of infinite quantities. First there
may be a global overall infinite constant in the definition of the measure,
stemming for example from all the factors of 2⇡ from eq. (14.14). By def-
inition, such infinite normalization constants are included in the definition
of the functional measure D⇢(r). In addition, we will see that correlation
functions may also be plagued by so called short-distance (or ultra-violet)
divergences. These infinities may be cured by introducing a short distance
cut-o↵ (which amounts to introduce a lattice) which may bring in some un-
derlying physical information. In some cases, they can be absorbed in the
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Charge density
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Field Theory for 
Electrolytes

Z =

1

N !

Z
dr1 . . . drN exp

✓
��

2

Z
drdr0⇢c(r)vc(r � r0

)⇢c(r
0
)

◆

vc(r) =
1

4⇡✏0r
�vc(r) = ��(r)

✏0

⇢c(r) =
NX

i=1

qi�(r � ri) + ⇢f (r)



Stratanovich-Hubbard = Gaussian identity
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Exact Field-Theoretical 
representation

Z =

Z
D'(r)e�
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Replace         by its expression, then can do integrals on⇢c(r) {ri}



Poisson-Boltzmann 
theory

Do Saddle-Point Method on functional integral=
Poisson-Boltzmann equation 

Possibility to compute fluctuations systematically
to all orders: the loop-expansion

⌅ =

✓
2�

"0

◆3/2

q3e3c1/2
Dimensionless 
coupling constant

plays the role of ~



Poisson-Boltzmann with 
hard-cores

Lattice Gas

II. THE MODIFIED POISSON–BOLTZMANN EQUATION

A. Lattice Gas Formulation

Consider an aqueous solution of charged ions. For simplicity we will assume that both

co-ions and counter-ions have the same size a. This assumption can be justified when all

the surface charges are of the same sign, since only counterions are then attracted to the

surface and reach high charge densities. Another simplification is that we do not distinguish

between the counterions which dissociate from the charged surfaces and the ones originating

from the added salt.

For the valencies of the ions we will consider three cases: (i) a symmetric z:z electrolyte,

(ii) an asymmetric 1:z electrolyte, and (iii) z-valent counterions without additional salt. The

different cases will be used to study the application of the modified equation in different

physical systems.

For a symmetric z:z electrolyte the solution contains two charge carriers, with charges

equal to ±ze. In order to derive the free energy we will use a discrete lattice gas formulation.

In this approach, the charge carriers are placed on a three dimensional cubic lattice where

the dimensions of a single cell are a × a × a (Fig. 2). Thus, by dividing space into discrete

cells (lattice sites) and limiting the occupation of each cell to a single ion we introduce a

short range repulsion between the ions. The size of a cell represents the volume of an ion

up to a numerical prefactor.

In order to describe the occupation of cells by ions we assign to each cell j, which is

located at rj, a spin-like variable sj. This variable can have one of three values: sj = 0 if

the cell is empty (occupied by a water molecule), and sj = ±1 according to the sign of the

ion that occupies the cell. The partition function of the system can now be written in the

form [30]

Z =
∑

sj=0,±1

exp

⎛

⎝−β

2
z2e2

∑

j,j′
sjvc(rj − rj′)sj′ +

∑

j

βµjs
2
j

⎞

⎠ (1)

The first term in the exponent is the electrostatic energy, where vc(r) = 1/ε|r| is the Coulomb

3

Figures

x

Fig. 1. Schematic view of the adsorption of large ions to a charged monolayer
[18]. The surface charge is carried by amphiphilic molecules which are confined to
the air/water interface. The surface charge density can be varied continuously by
changing the area per amphiphilic molecule.

j a

s =+1
s =-1

j

j

s =0

r

j

a

Fig. 2. Schematic view of an electrolyte on a lattice model. The lattice cells are
located at rj and assigned a spin-like variable sj = 0,±1.
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Recall that rj are the discrete coordinates of the lattice sites while r,r0 are
continuous spatial coordinates. It is now possible to trace over the allowed
values of the spin-like variables, sj = 0,±1 (last line in eq. 18.10)

P
sj=0,±1 exp

✓
�i�ze

X

j

sj'(rj) +
X

j

�µjs
2
j

◆

=
Y

r

⇣
1 + e�µ+�iz�e'(r) + e�µ�+iz�e'(r)

⌘

= exp

 
X

r

log
⇣
1 + e�µ+�iz�e'(r) + e�µ�+iz�e'(r)

⌘!
(18.11)

In the continuum limit, where physical properties vary on length scales
much larger than the size of a single site, the sum over the lattice sites can
be replaced by a continuous integral over space and the partition function
simplifies to

Z =

Z
D' exp

✓
� �"

2

Z
d3r (r')2

+
1

a3

Z
d3r log

�
1 + e�µ+�iz�e'(r) + e�µ�+iz�e'(r)

�◆

(18.12)

The chemical potentials µ± are related to the total number of positive
and negative ions in the solutions through

N± =
1

Z

@Z

(�µ±)
=

*
1

a3

Z
d3r

e�µ±⌥iz�e'(r)

1 + e�µ+�iz�e'(r) + e�µ�+iz�e'(r)

+
(18.13)

Where hOi denotes the grand canonical average of the operator O.
In the bulk, the total number of positive and negative ions is equal, N+ =

N� = N/2. It is useful to define the volume fraction occupied by both the
co- and counter-ions as �0 = Na3/V = 2n0a3 where V is the total volume
and n0 is the bulk concentration of the electrolyte. In the thermodynamic
limit N,V ! 1 while n0 and �0 remain finite. Using eq. 18.13 the chemical
potentials can be expressed in terms of �0 as

e�µ+ = e�µ� =
1

2

�0
1� �0

(18.14)

In the mean field approximation, the partition function is approximated
by the value of the functional integral at its saddle point  (r) ⌘ i'c. The
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z : z salt

Since the exponential is quadratic in ρc, its functional integral can be performed.

Z =
∫
Dϕc exp

(
− βε

8π

∫
dr |∇ϕc|2

+
1

a3

∫
dr ln{1 +βµ+−izβeϕc(r) +βµ−+izβeϕc(r)}

)
(7)

The chemical potentials µ± are related to the total number of positive and negative ions

in the solutions through

N± =
1

Z

∂Z

∂(βµ±)
=

〈
1

a3

∫
dr

βµ±∓izβeϕc(r)

1 +βµ+−izβeϕc(r) +βµ−+izβeϕc(r)

〉

(8)

Where ⟨O⟩ denotes the grand canonical average of the operator O.

In the bulk, the total number of positive and negative ions is equal, N+ = N− = N/2.

It is useful to define the volume fraction occupied by both the co- and counter-ions as

φ0 = Na3/V = 2cba3 where V is the total volume and cb is the bulk concentration of the

electrolyte. In the thermodynamic limit N, V → ∞ while cb and φ0 remain finite. Using

eq. 8 the chemical potentials can be expressed in terms of φ0:

βµ+ =βµ−=
1

2

φ0

1 − φ0
(9)

In the mean field approximation, the partition function is approximated by the value of

the functional integral at its saddle point ψ(r) ≡ iϕc. The free energy of the system is then

given by

F

kBT
= − ln Z

= −βε

8π

∫
dr |∇ψ|2 − 1

a3

∫
dr ln

{

1 +
φ0

1 − φ0
cosh [βzeψ(r)]

}

(10)

where ψ(r) satisfies the modified Poisson–Boltzmann equation for a symmetric z:z electrolyte

[19]:

∇2ψ =
8πze

ε

cb sinh(zβeψ)

1 − φ0 + φ0 cosh(zβeψ)
(11)

5

ze

"
In the zero size limit, a → 0, (namely, φ0 → 0 while cb remains fixed) the above equation

reduces to the regular Poisson–Boltzmann equation:

∇2ψ =
8πze

ε
cb sinh(zβeψ) (12)

For an asymmetric 1:z electrolyte the derivation is very similar and the modified PB

equation is:

∇2ψ =
4πzecb

ε

zβeψ−−βeψ

1 − φ0 + φ0(zβeψ+z−βeψ)/(z + 1)
(13)

where φ0 = (z + 1)a3cb is the combined bulk volume fraction of the positive and negative

ions.

Finally, if the solution is salt free and contains only negative counterions of valency −|z|,

the modified PB equation becomes

∇2ψ =
4πzec0

ε

zβeψ

1 − φ0 + φzβeψ
0

(14)

where φ0 = a3c0 is the volume fraction at an arbitrary reference point r0 where ψ(r0) = 0

and c(r0) = c0. Note that the reference point of zero potential does not lie at infinity. The

salt-free system contains only the counterions which neutralize the surface charges. Since

the surface is taken to be infinite in its size, the potential does not go to zero as x → ∞,

but it diverges to −∞. Physically this divergence is not a problem because the electric field

and counterion density tend to zero at large distances.

B. Phenomenological Free Energy Derivation

The modified PB equation (eqs. 11, 13 and 14) can also be derived from a phenomeno-

logical free energy [19]. Let us consider again the symmetric z:z case. This is done by

expressing the free energy of the system F = Uel − TS in terms of the local electrostatic

potential ψ(r) and the ion concentrations c±(r). The electrostatic contribution is

Uel =
∫

dr
[
− ε

8π
|∇ψ|2 + zec+ψ − zec−ψ − µ+c+ − µ−c−

]
(15)

6

ze

"
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where k

B

T is the thermal energy. For simplicity, we
assume that both types of ions have the same size a.
The first two terms are the entropies of the positive and
negative ions, whereas the last term is the entropy of the
solvent molecules. Indeed, this last term is responsible
for the novel steric corrections to the PB equation. In
a more rigorous way, these corrections are obtained by
considering a lattice-gas version of the Coulomb gas
in which each lattice site is occupied at most by one
ion [14].
The variation of the free energy F ≠ U 2 TS with

respect to c and c

6 yields our modified PB equation for
the 1:z electrolyte:

=2c ≠ 2
4p

´
fec

1srd 2 zec

2srdg

≠
4pzec

b

´

e

zbec 2 e

2bec

1 2 f0 1 f0sezbec 1 ze

2becdysz 1 1d
,

(3)

where f0 ≠ sz 1 1da3
c

b

is the total bulk volume fraction
of the positive and negative ions.
For a symmetric z:z electrolyte, one gets

=2c ≠
8pzec

b

´

sinhszbecd
1 2 f0 1 f0 coshszbecd

, (4)

where f0 ≠ 2a

3
c

b

. In the limit of small ionic concen-
trations, f0 ! 0, Eqs. (3) and (4) reduce to the standard
PB equations. Moreover, for any ionic concentration and
at low electrostatic potentials, jbecj ø 1, both equations
reduce to the linearized PB equation (Debye-Hückel limit)
=2c ≠ k2c , where k21 is the Debye-Hückel screening
length. For the asymmetric case k2 ≠ 4pl

b

zsz 1 1dc
b

,
where l

b

≠ e

2y´k

B

T is the Bjerrum length equal to 7 Å
for aqueous solutions at room temperature.
Our approach deviates significantly from the original

PB equation for large electrostatic potentials jbecj ¿ 1.
In particular, the ionic concentration is unbound in the
standard PB approach, whereas here it is always bound
by 1ya

3 (“close packing”) as can be seen from Eqs. (3)
and (4). This effect is important close to strongly charged
surfaces immersed in an electrolyte solution.
Note that for high positive potentials, bec ¿ 1, the

contribution of the positive ions is negligible and the neg-
ative ion concentration follows a distribution reminiscent
of the Fermi-Dirac distribution [15],

c

2srd ! 1
a

3

1

1 1 sz 1 1d 12f0

f0
e

2zbec
, (5)

where the excluded volume interaction plays the role of
the Pauli principle.
To demonstrate the usefulness of our method, we study

the case of a single planar surface with charge density
s . 0 in contact with an electrolyte solution. Ionic con-
centration profiles are obtained from the numerical so-
lution of Eq. (3) as a function of x, the distance to the
positively charged surface. Since the positive ion con-

centration is small near the surface, we show in Fig. 1(a)
only the negative ion profiles, as well as the correspond-
ing original PB profile. The main effect is the saturation

FIG. 1. (a) Concentration profiles of negative multivalent
ions c

2sxd near a positively charged surface as obtained
from the numerical solution of Eq. (3) for two different
ion sizes a ≠ 7.5 Å and a ≠ 10 Å. Note that the saturated
layer width is l

p . 2 and 5 Å, respectively. The solid line
represents the concentration profile of the standard PB equation.
(b) Calculated electrostatic potential profiles near the surface
plotted together with the parabolic approximation [Eqs. (6) and
(7)]. The dotted, dashed, and solid lines are as in (a). The
bulk concentration is c

b

≠ 0.1 M for a 1:z electrolyte with
z ≠ 4. The surface charge density s is taken as one electron
charge per 50 Å2. The aqueous solution with ´ ≠ 80 is at
room temperature.
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Charged objects (ions, interfaces and particles) im-
mersed in liquids play a central role in electrochemistry,
colloidal science and biology ranging from electrolyte ap-
plications, stabilization of colloidal suspensions, protein
folding and its biological activity, and even in protein
aggregation [1–5].

The most commonly used model — the Poisson-
Boltzmann model (PB) [1, 3] — assumes point-like ions
immersed in a continuum dielectric media and treats the
system in a mean-field approximation. The medium is
modeled by a homogeneous and isotropic dielectric con-
stant. This model is simple, elegant and e⇥cient. It is
in good agreement with experiments for monovalent ions
up to energies of order of kBT . However, careful mea-
surements of the forces between two charged surfaces at
nanometric scale show strong deviation from the simple
PB picture [3]. In particular, the assumption that the
continuum dielectric medium is homogeneous does not
take into account the strong dielectric response of water
molecules around charges. The discrete moments of wa-
ter molecules will orient themselves close to charged ions
and surfaces giving rise to hydration shells and to hy-
drophobic interactions, which can be measured at short
distances, for example, between two charged plates (sur-
face force balance apparatus). These hydration phenom-
ena are very important in many biological processes such
as protein folding, protein crystallization and interactions
between charged biopolymers inside the cell.

Most studies other than the PB rely on one of sev-
eral theoretical techniques. Monte Carlo (MC) [6] or
Molecular Dynamic (MD) [7] computer simulations take
into account the discrete nature of the dipolar molecules.
A second approach relies on liquid state theory, integral
equation and other methods [8, 9]. In simple planar ge-
ometry the latter gives good agreement with the MC and
MD simulations. However, all these methods are rather
cumbersome and involve heavy computation resources.
In addition, they lack the simple physical picture pro-
vided by a Poisson-Boltzmann type of approach.

In this Letter we propose another approach called the
Dipolar Poisson-Boltzmann (DPB). Unlike the PB model
where the solution is characterized by a homogeneous
dielectric constant, in the DPB model we coarse grain

the interaction of individual ions and dipoles interact-
ing together. This makes the DPB an analytic extension
of the PB formalism. Although it is done on a mean-
field level, it includes some aspects of the discrete nature
of the dipolar solvent molecules and how they modify
the ion–solvent interactions. We show that such correc-
tions to the PB treatment are important in predicting
dipolar profiles close to charged surfaces and result in a
strong deviation from their average value. Furthermore,
the DPB model can, in principle, be expanded to any
desired higher order in a systematic expansion.

Consider a system composed of Nd mobile dipoles each
with a dipolar moment p and I species of ions immersed
in a continuum dielectric medium with a weak dielectric
response (the justification for this system set-up is elab-
orated below), ⇤ & ⇤0, ⇤0 being the vacuum permittivity.
Each ionic species has Nj ions of charge qje, j = 1 . . . I,
where e is the electron charge. In addition, the system
includes a fixed charge distribution ⇧f (r). The charge
density created by a point dipole p at point r0 is given
by ⇧d(r) = �p·⇤⇥(r�r0). Thus, the total charge density
is

⇧(r) = �
Nd⇤

i=1

pi ·⇤⇥(r�ri)+
I⇤

j=1

Nj⇤

i=1

qje⇥(r�R(j)
i )+⇧f (r)

(1)
where ri denotes the position of dipoles of moment pi and
R(j)

i are the positions of ions of type j. The canonical
partition function is given by
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where vc(r) denotes the Coulomb potential. Using a stan-
dard Hubbard–Stratonovich transformation,
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Charged objects (ions, interfaces and particles) im-
mersed in liquids play a central role in electrochemistry,
colloidal science and biology ranging from electrolyte ap-
plications, stabilization of colloidal suspensions, protein
folding and its biological activity, and even in protein
aggregation [1–5].

The most commonly used model — the Poisson-
Boltzmann model (PB) [1, 3] — assumes point-like ions
immersed in a continuum dielectric media and treats the
system in a mean-field approximation. The medium is
modeled by a homogeneous and isotropic dielectric con-
stant. This model is simple, elegant and e⇥cient. It is
in good agreement with experiments for monovalent ions
up to energies of order of kBT . However, careful mea-
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cumbersome and involve heavy computation resources.
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More importantly, the PBE method contains a very rough
approximation which consists in using a constant and
somewhat arbitrary value for the dielectric constant of the
protein (usually set at 2–4), that abruptly jumps to 80 at the
interface between the protein and the solvent. Moreover,
because of polarization effects in the vicinity of charges, it is
expected that the representation of the solvent as a homo-
geneous dielectric medium is bound to be erroneous close to
the interface. The need to have a smooth dielectric profile at
the border of the solute has long been recognized and this
problem still attracts a lot of attention and controversy (23),
especially as the concept of dielectric constant is not, per se, a
microscopic one (24). A number of attempts have been made
to derive the function eð~rÞ from first principles. The most
complete derivation comes from Ehrenson (25) for a dipolar
fluid in the electric field of an ion or a dipole. This was ap-
plied to proteins by Hassan et al. (26) to derive a screened
Coulomb potential with a distance-dependent e(r) that can
then be used in molecular dynamics simulations without
explicit solvent (27).
In this article, we are interested in a solvent model with

built-in eð~rÞ dependence that allows the rapid prediction of
solvent density around macromolecular solutes. We show
how to introduce (free) dipolar charges representing the
solvent molecules in a Poisson-Boltzmann formalism. The
system self-consistently adjusts its position-dependent sol-
vent density and the electric potential is obtained numeri-
cally, not analytically. For a solute with a complex shape, the
resulting dielectric profile and solvent density are not
spherically symmetric but depend on the chemical nature and
partial charge of the exposed nearby solute atom(s).
There is a variety of situations on both the experimental and

computational sides where onewould like to have access to the
solvent density map, starting from just the PDB atomic co-
ordinates and the partial charges of the molecule (28). On the
experimental level, such a solvent map could be very helpful
to interpret x-ray electron density maps in the final stages of
model building, when water molecule assignment starts. It
would also help interpreting both SAXS and SANS experi-
mental data, where the hydration shell is usually modeled as a
mere cushion of constant width around the solute (29).
On the modeling level, it would be very useful for quickly

computing the electrostatic part of solvation energies with a
more realistic model than PBE, especially as a molecular
understanding of the nature of the hydrophobic effect is still
lacking for macromolecules and remains a subject of active
research (30–33). The structure of water around both polar
and apolar solutes is also still actively studied (34–36).
Knowledge of the solvent density profile has clear implica-
tions for the calculation of solvation energies and the mod-
eling of the hydrophobic effect at different length scales (31).
Indeed, as included in the van der Waals theory of capillarity
(37), it has been proposed that the free energy contains a term
proportional to the integral of the squared gradient of the
solvent density profile (32,33).

Here we show how a simple solvent description based on
an assembly of freely orienting and interacting dipoles on a
grid can be readily incorporated into and solved within the
Poisson-Boltzmann formalism. This is in effect a generali-
zation of the Langevin Dipoles-Protein Dipoles model de-
veloped by Warshel and Levitt (38), Warshel and Russell
(39), Russell and Warshel (40), and Warshel and Papazyan
(41), with the key additional feature that the dipoles are now
allowed to have a variable density at each allocation grid
point around the solute. The use of a lattice ensures that size
exclusion effects are included in this Poisson-Boltzmann-
Langevin (PBL) model.
A preliminary account of the method and its implemen-

tation through a web site has been presented recently (42),
and detailed numerical applications to the case of a charged
planar surface have just been described by Abrashkin et al.
(43). Here we give a full description of the method, starting
with a phenomenological derivation of the free energy of
the system. Minimization of the free energy then leads to
a Poisson-Boltzmann-Langevin equation (PBLE), which we
solve by rapid numerical methods.

THEORY

The PBL equation

Let us consider a fixed charged biomolecule (the solute) im-
merged in a solvent, and surrounded by an ion atmosphere.We
represent the solvent as an assembly of freely orientable di-
poles p~j in a z/z electrolyte with the free ions carrying a charge
6 ze, where e is the charge of the electron and z the valency of
the free ions. The solute and the free dipoles and ions are
embedded in a lattice where each site j bears a spinlike oc-
cupancy dj¼ 0, 1 and sj¼$1, 0, 1 for the free dipoles and the
free ions (see Fig. 1), with chemical potential mdip and mion,
respectively. The lattice allows for imposing directly steric
hindrance between the different species, without recourse to an
additional repulsion potential. We suppose for the moment that
both ions and dipoles have the same diameter a (seeAppendixB
for the case where ions and dipoles have a different size). The
dipoles and the ions create a local charge density in the sol-
vent that is to be added to the fixed charge density rfð~rÞ ¼
+qidð~r $~riÞ of the solute, all of them interacting solely
through Coulomb potential

R
d~rd~r9rð~rÞvðj~r $~r9jÞrð~r9Þ and

rð~rÞ ¼ rfð~rÞ1relecionsð~rÞ1relecdip ð~rÞ:
As shown in Appendix A the free energy of the system

described in Fig. 1 is a function of the electric potentialFð~rÞ;

bF ¼$ b

2

Z
d~r e0j~=Fð~rÞj2 1b

Z
d~r rfð~rÞFð~rÞ

$ 1

a3

Z

Solvent

d~r ln

 

11 2lioncoshðbezFð~rÞÞ

1 ldip

sinhðbpoj~=Fð~rÞjÞ
bpoj~=Fð~rÞj

!

; (1)
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where ⇤ = ⇤0⇤r is the medium dielectric constant (in SI
units) and � = 1/T is the inverse temperature (where the
Boltzmann constant, kB , is set to unity). The fugacities
of the dipoles and ith ion species, ⌅d and ⌅i, respectively,
are derived from the relations: Nd = ⌅d

⌅
⌅⇤d

log Z and
Ni = ⌅i

⌅
⌅⇤i

log Z.
Assuming that each molecular dipole has a fixed mag-

nitude, |p| = p0 we sum now over the {p} degrees
of freedom and obtain the dipolar term in the form
⌅d

⇧
d3r sin(�p0|⌅⌥|)/�p0|⌅⌥|.

The DPB equation is then obtained as the saddle-point
of the action (3) [where we have used ⇥(r) = i⌥(r) to
denote the physical electrostatic potential]

�⇤⌅2⇥ =
⌃

i

⌅iqie e��qie� + ⇧f (r)

+ ⌅dp0⌅ · [(⌅⇥/|⌅⇥|)G (�p0|⌅⇥|)] (4)

and the function G(u) = coshu/u � sinh u/u2 is related
to the Langevin function L(u) = cothu � 1/u by G =
(sinhu/u)L. One recognizes in (4) the usual terms of
the Poisson-Boltzmann equation (the first two terms on
the RHS), while the last term is the divergence of the
polarization contributing to the induced charge density.
The local polarization density (square brackets) in eq. (4)
is the product of the dipole density, sinhu/u, and the
average dipole moment given (on a mean-field level) by
the Langevin function.

In the following we study a dipolar solvent with 1:1
salt confined between two oppositely charged planes [10].
While the spatial variation of the dielectric constant is
pronounced near any charged surface, the dipolar con-
tribution to the osmotic pressure is much larger for two
anti-symmetric plates than for equally charged ones (as
will be explained below). Choosing the charge density
to be ⇥⌃ for the two plates located at z = ±d/2, the
potential, ionic profiles and dipole density depend only
on the z coordinate perpendicular to the planes and (4)
becomes

� ⇤⇥⇥⇥(z) = �2cse sinh �e⇥ + ⌃⇥(z + d/2)

� ⌃⇥(z � d/2) + cdp0
d

dz

⌥
G(�p0⇥⇥)

�
(5)

where we assume that the system is in contact with a
reservoir containing a dipolar fluid of concentration cd

and salt of concentration cs so that ⌅d = cd and ⌅s = cs.
The boundary condition at the z = �d/2 charged

plane is �⇤⇥⇥
s = cdp0G(�p0⇥⇥

s) + ⌃ and the electric field
E = �⇥⇥ is the same, for the anti-symmetric system,
as on the other plane. Note that the usual Neumann
boundary conditions for the PB equation includes now
the polarization induced surface charges. We find that for
strong enough surface charge densities the induced charge
can be substantial and corresponds to a large modifica-
tion of the standard boundary condition.

From (5) we obtain the first integral which is equiva-
lent to the contact theorem expression for the pressure

di⇤erence � = Pin � Pout

� = � ⇤

2
⇥⇥2(z) + 2csT (cosh�e⇥� 1)

� cdp0⇥⇥G(�p0⇥⇥) + cdT

⇤
sinh �p0⇥⇥

�p0⇥⇥ � 1
⌅

(6)

This equation allows to express ⇥(z) as a function of
⇥⇥ and thus solves (5) by a simple quadrature. The first
two terms in � are the usual PB contributions, the first
being the electric field and the second the mixing entropy
of the ions. The other two terms are the specific terms of
the DPB model. The first is the enthalpic contribution
related to the orientation of the dipoles in a local elec-
tric field. The last term is the rotational entropy of the
dipoles. The pressure at any point z is calculated with
respect to the pressure exerted by the bulk reservoir out-
side the plates.

Another way to interpret (5) is to write it as a PB
equation with an e⇤ective field-dependent dielectric con-
stant ⇤e⇥(E) = ⇤0⇤e⇥r (E) replacing the ⇤ on the LHS. The
non-linear dielectric response is given by

⇤e⇥(E) = ⇤ +
cdp0

E
G(�p0E) (7)

For weak fields one can expand the function G to first or-
der and obtain the standard PB equation ⇤e⇥⇥⇥⇥(z) ⇤
2cse sinh �e⇥ with an e⇤ective homogeneous dielectric
constant ⇤e⇥ = ⇤ + �cdp2

0/3.
This result for dielectric response of molecules with

intrinsic dipoles in dilute systems is well known. Since
we are interested in aqueous solutions, we have chosen
as a fit parameter the molecular dipole moment of water
to be p0 = 4.86 Debye (instead of the physical value
p0 = 1.85). This allows us to obtain ⇤e⇥r = 80 for ⇤ = ⇤0
(vacuum permittivity) and cd = 55 M.

When the dipolar e⇤ects are strong (see below) there
is a crowding of dipoles and ions between the plates, and
their densities can reach values higher than close packing.
To avoid this problem, we can generalize our theory to
take into account the finite molecular size [11]. Assuming
that the 1:1 ions and dipoles are constrained on a lattice
of spacing a (roughly equal to their molecular size), and
imposing the condition that each site of the lattice is oc-
cupied by only one of the three species (incompressibility
condition), the free energy becomes

��F = �⇥
2

⇧
d3r[⌅⇥(r)]2

+ 1
a3

⇧
d3r log

�
cd

sinh �p0|⇤�|
�p0|⇤�| + 2cs cosh(�e⇥)

⇥
(8)

where cd + 2cs = a�3. Minimizing the above free en-
ergy, the Modified Dipolar Poisson-Boltzmann (MDPB)
equation is obtained

�⇤⇥⇥⇥(z) = ⌃⇥(z + d/2)� ⌃⇥(z � d/2)
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dz
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tric field. The last term is the rotational entropy of the
dipoles. The pressure at any point z is calculated with
respect to the pressure exerted by the bulk reservoir out-
side the plates.

Another way to interpret (5) is to write it as a PB
equation with an e⇤ective field-dependent dielectric con-
stant ⇤e⇥(E) = ⇤0⇤e⇥r (E) replacing the ⇤ on the LHS. The
non-linear dielectric response is given by

⇤e⇥(E) = ⇤ +
cdp0

E
G(�p0E) (7)

For weak fields one can expand the function G to first or-
der and obtain the standard PB equation ⇤e⇥⇥⇥⇥(z) ⇤
2cse sinh �e⇥ with an e⇤ective homogeneous dielectric
constant ⇤e⇥ = ⇤ + �cdp2

0/3.
This result for dielectric response of molecules with

intrinsic dipoles in dilute systems is well known. Since
we are interested in aqueous solutions, we have chosen
as a fit parameter the molecular dipole moment of water
to be p0 = 4.86 Debye (instead of the physical value
p0 = 1.85). This allows us to obtain ⇤e⇥r = 80 for ⇤ = ⇤0
(vacuum permittivity) and cd = 55 M.

When the dipolar e⇤ects are strong (see below) there
is a crowding of dipoles and ions between the plates, and
their densities can reach values higher than close packing.
To avoid this problem, we can generalize our theory to
take into account the finite molecular size [11]. Assuming
that the 1:1 ions and dipoles are constrained on a lattice
of spacing a (roughly equal to their molecular size), and
imposing the condition that each site of the lattice is oc-
cupied by only one of the three species (incompressibility
condition), the free energy becomes

��F = �⇥
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d3r log
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cd

sinh �p0|⇤�|
�p0|⇤�| + 2cs cosh(�e⇥)

⇥
(8)

where cd + 2cs = a�3. Minimizing the above free en-
ergy, the Modified Dipolar Poisson-Boltzmann (MDPB)
equation is obtained

�⇤⇥⇥⇥(z) = ⌃⇥(z + d/2)� ⌃⇥(z � d/2)

+ cdp0
a3

d
dz

⌥
L(�p0�

0)
D

�
� 2cse

a3
sinh �e�

D (9)

3

where D = cd sinh(�p0⇥�)/�p0⇥� + 2cs cosh(�e⇥). The
presence of the denominator D in (9) leads to saturation
of the local ionic and dipolar densities, which is quite im-
portant close to charged boundaries. Without the dipolar
e⇤ect p0 = 0, the MDPB equation reduces to the modi-
fied PB equation which also displays an ionic saturation
e⇤ect because of solvent entropy [11].

A large deviation of the DPB treatment from the stan-
dard PB one may occur in the strong E field regime. Such
a case is presented now by solving numerically eq. (5)
with its boundary condition for a system composed of
two planar surfaces located at z = ±d/2, with opposite
surface charge densities ⇥⇤ and with small amounts of
1:1 salt to avoid strong screening e⇤ects. In this anti-
symmetric system the potential at the mid-plane van-
ishes, while the electric field there is non zero. The
DPB pressure, in turn, deviates substantially from its
corresponding PB value due to the coupling between the
dipole density and the non-zero electric field. This is in
contrast with a symmetric planar system where the elec-
tric field vanishes at the mid-plane.
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FIG. 1: The DPB rescaled dielectric constant �e�(z)/�bulk and
the dipole density cd(z)/cd profiles between two oppositely
charged plates at separation d = 20 Å. The surface charge
density is ⇥ = �e/50 Å2. The reservoir contains 1:1 salt of
concentration cs = 10°5 M and dipoles of density cd = 10 M.
The dielectric constant is rescaled with respect to its bulk
value �bulk = 18.2. The profiles have a strong variation in the
vicinity of the plates (up to 2 Å) and then saturate to a value
that is somewhat higher than their bulk values.

Had we modeled the water solvent as dipoles in vac-
uum (⇥ = ⇥0), the dipole density in the mid region (see
Fig. 1) would have reached unphysical values above the
close packing ones, because nothing in our model pre-
vents over-crowding. In order to avoid this artifact we
use a background of low dielectric solvent (e.g., ⇥r = 4.5
for ether) and treat explicitly the strong water dielectric
response by the dipolar term in the DPB equation (5). In
this fashion the water bulk density is lower than its close
packing value, yielding a dipole profile density which is

higher than the bulk value but below the close packing
one. Note that all other mixture enthalpic and entropic
terms are not considered at present [12].

In Fig. 1 we present the DPB profiles for the dipole
density and local dielectric constant between two charged
plates with separation of d = 20 Å. The figure shows
a strong accumulation of dipoles between the charged
plates leading to high e⇤ective dielectric constant. The
profile of the dipole density (dashed line) is rescaled by
its bulk value. It can be seen that in the surface vicinity
(up to about 2Å), the density rises to above four times its
bulk value due to the strong attraction with the charged
surface. In the mid-region the density saturates at about
1.4 times its bulk value. The corresponding local e⇤ec-
tive dielectric constant (solid line in the figure) can be
calculated from (7). The profile resembles that of the
dipole density. In rescaled units, it saturates at a value
of about 1.2 in the mid-region and reaches about 2.3 at
the surfaces.

Compared to a PB theory with the same bulk and
homogeneous ⇥e� taken as constant throughout the sys-
tem, the DPB demonstrates strong deviations, not only
in the surface proximity but also in its saturated mid-
range value (for strong enough ⇤ and/or small d).

The ionic concentration is much less a⇤ected by the
presence of the dipoles. We have computed the ion den-
sities as a function of the distance to the surface. Because
of the di⇤erent boundary condition the ionic density is
strongly suppressed at the surface with respect to PB (to
about half of its original value). However, it comes back
to its PB value at distances as close as 0.5 Å from the
surface.

In Fig. 2 we plot the relative osmotic pressure di⇤er-
ence (�DBP � �PB)/�PB as a function of the surface
separation d. The pressure is a global quantity, and is
sensitive to the strength of the electric field throughout
the system rather than to its value on the surface. As
a result, �DPB deviates strongly from �PB for small d,
while �DPB ⇤ �PB at larger separation.

We have presented an analytical modification of the
PB equation by including the dipole degrees of freedom.
We calculated the correction to the potential, electric
field and densities for a system of two oppositely charged
plates (Fig. 1). The results are compared with those of
the usual PB equation with an e⇤ective dielectric con-
stant. We find that when the electric field is strong
(p0E ⇤ kBT ), there are strong deviations from the PB
model. The spatial dependence of the dielectric constant
signals an ordering of the dipoles at the surfaces. This
spatial dependence is also a signature of non-linearity in
the dielectric response. The inter-plate pressure is sensi-
tive to the value of the electric field at the mid-plane and
can deviate considerably from the PB results for small
enough separation and/or large surface charges (Fig. 2).

The formalism presented here is general and opens up
the way to several interesting applications. Even on a
mean-field level, as used in this paper to compute pro-
files and osmotic pressure, we find large deviations from
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• With point-like dipolar water, no cation-
anion asymmetry

• By taking finite-size dipoles for water, one 
gets a theory similar to non-local 
electrostatics (but positive susceptibilities)

• Possibility to generalize to non-permanent 
dipoles
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and bulk concentration cbdip. These water dipoles are dis-

tributed on a lattice to approximate the excluded-volume
effects in the lattice gas formalism, the domain outside the
boundary of the molecule is represented as a three-
dimensional lattice with N uniformly sized cuboids, of
size a3, where a, the lattice spacing, is set to the geomet-
rical dimension of the dipoles. As a first approximation, we
assume that the dipoles are hard spheres of fixed sizes. The
solute is described by a constant charge density !f and a
solvent accessibility function "ð~rÞ that is zero for points
inside the envelope of the solute and one otherwise. This
envelope can be taken as the molecular surface or the
accessible surface of the solute.

Each site in the lattice can contain at most one dipole. If
it is empty, its energy is zero. The energy of one dipole of
constant magnitude p0 at position ~r is obtained as the
Boltzmann-weighted average of the interaction # ~p0 $ ~E
over all orientations of ~p0, where ~E is the local electric
field. To mimic correlation effects between dipoles in a
way compatible with a mean-field approach, we add a
Yukawa field !ð~rÞ to the energy of a dipole present at
position ~r in the lattice. A similar approach was used by
Coalson and colleagues to account for free ions steric
repulsion in their lattice field theory of a Coulomb gas
with finite size particles [13]. This Yukawa field is derived
from a Yukawa potential VYðrÞ ¼ #v0ðe#r=b=rÞ with two
characteristic lengths b and lY ¼ #v0 where# ¼ 1

kBT
. This

Yukawa potential is attractive to account for interactions
between water molecules; we do not consider a repulsive
term, as steric effects are accounted for by the lattice.

Following the formalism introduced by Borukhov et al.
[14], the grand canonical partition function Zlð~rÞ for the
lattice site at position ~r is then given by

Z lð ~rÞ ¼ 1þ $dipe
##!ð ~rÞ sinhcðuÞ; (1)

where $dip is the fugacity of the dipoles, u ¼ #p0j ~Eð ~rÞj
and sinhcðuÞ ¼ sinhðuÞ=u.

The free energy functional for the whole lattice includes
the electrostatic energy, the functional form for the energy
of the Yukawa field, the energy of the fixed charges, and the
logarithm of the partition function Zl defined in Eq. (1):

#F ¼##

2

Z
d~r%0j ~r"ð~rÞj2

þ #

2v0

Z
d~r
!
j ~r!ð ~rÞj2þ!ð~rÞ2

b2

"

þ#
Z
d~r!fð~rÞ"ð ~rÞ# 1

a3

Z
d~rlnðZlð ~rÞÞ: (2)

Writing &F
&" ¼ 0 and &F

&! ¼ 0, we get a system of two
differential equations, which we refer to as the YULP
equations.

(1) A PBL equation [12] in " in which $dip is replaced

by $dipe
##!ð ~rÞ:

~r
!
%0 ~r"ð ~rÞþ"ð ~rÞ#p2

0

$dipe
##!ð ~rÞF1ðuÞ
a3Zlð ~rÞ

~r"ð ~rÞ
"
¼#!fð ~rÞ;

(3)

where F1ðuÞ ¼ sinhcðuÞ
u LðuÞ; LðuÞ ¼ 1= tanhðuÞ # 1=u is

the Langevin function.
(2) A second order differential equation in !ð ~rÞ:
1

v0

!
#!#!ð ~rÞ

b2

"
¼ "ð~rÞ 1

a3
$dipe

##!ð~rÞ sinhcðuÞ
Zlð~rÞ

: (4)

The bulk dipole concentration cbdip verifies

N Ac
b
dip ¼ # @F

@'dip

########(¼0;!¼!bulk

; (5)

As $dip ¼ e#'dip , we get

$dip ¼ e#!bulk
N Ac

b
dipa

3

1#N Ac
b
dipa

3 : (6)

The YULP equations include five parameters: the lattice
size a, strength p0, bulk concentration cbdip, and the pa-

rameters of the Yukawa field lY and b. We fix a ¼ 2:4 $A.
We set cbdip to 55M, and p0 to its value in solution, i.e.,

2.35 D.
b defines the range of the Yukawa potential; it is usually

set to )=1:8 $A, i.e., to a fraction of the diameter ) of the
hard spheres representing the water [15]. Setting ) ¼ 2:8
gives b ¼ 1:55 $A. Note that full saturation of the lattice
(i.e., with one dipole for each lattice site) leads to a
maximum water density of 1=a3, i.e., approximately twice
the density of bulk water for our choice of a. lY is a
characteristic length that directly relates to the strength
of the potential. We set lY ¼ 7:0 $A (see below).
The two equations (3) and (4) are solved numerically on

a finite domain % with boundaries &%. The domain % is

set to be large enough so that " ¼ 0, ~E ¼ ~0, and ! ¼
!bulk at the boundary &%. The distance between the solute
surface and the boundary is required to be at least 2lB,
where lB is the Bjerrum length (equal to 7 Å in water at
T ¼ 300 K). From Eqs. (4) and (6), we get #!bulk ¼
#lYb

2N Ac
b
dip. With cbdip ¼ 55M and b and lY set to the

values given above, we get #!bulk ¼ #0:55.
We use a self-consistent iterative algorithm to solve for

"ð ~rÞ and !ð ~rÞ. Full details on the algorithm will be pub-
lished separately (see also [12]).
We define !b ¼ N Ac

b
dip. The density of dipoles is given

by #@F =@'dip:

!ð~rÞ ¼ !b
e##½!ð ~rÞ#!bulk( sinhcðuÞ

1# !ba
3½1# e##ð!ð~rÞ#!bulkÞ sinhcðuÞ(

(7)

for any position ~r inside the lattice gas. When u ! 0 and
!ð ~rÞ ! !bulk, we get as expected !ð ~rÞ ¼ !b, i.e., the bulk
density of water.
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and bulk concentration cbdip. These water dipoles are dis-

tributed on a lattice to approximate the excluded-volume
effects in the lattice gas formalism, the domain outside the
boundary of the molecule is represented as a three-
dimensional lattice with N uniformly sized cuboids, of
size a3, where a, the lattice spacing, is set to the geomet-
rical dimension of the dipoles. As a first approximation, we
assume that the dipoles are hard spheres of fixed sizes. The
solute is described by a constant charge density !f and a
solvent accessibility function "ð~rÞ that is zero for points
inside the envelope of the solute and one otherwise. This
envelope can be taken as the molecular surface or the
accessible surface of the solute.

Each site in the lattice can contain at most one dipole. If
it is empty, its energy is zero. The energy of one dipole of
constant magnitude p0 at position ~r is obtained as the
Boltzmann-weighted average of the interaction # ~p0 $ ~E
over all orientations of ~p0, where ~E is the local electric
field. To mimic correlation effects between dipoles in a
way compatible with a mean-field approach, we add a
Yukawa field !ð~rÞ to the energy of a dipole present at
position ~r in the lattice. A similar approach was used by
Coalson and colleagues to account for free ions steric
repulsion in their lattice field theory of a Coulomb gas
with finite size particles [13]. This Yukawa field is derived
from a Yukawa potential VYðrÞ ¼ #v0ðe#r=b=rÞ with two
characteristic lengths b and lY ¼ #v0 where# ¼ 1

kBT
. This

Yukawa potential is attractive to account for interactions
between water molecules; we do not consider a repulsive
term, as steric effects are accounted for by the lattice.

Following the formalism introduced by Borukhov et al.
[14], the grand canonical partition function Zlð~rÞ for the
lattice site at position ~r is then given by

Z lð ~rÞ ¼ 1þ $dipe
##!ð ~rÞ sinhcðuÞ; (1)

where $dip is the fugacity of the dipoles, u ¼ #p0j ~Eð ~rÞj
and sinhcðuÞ ¼ sinhðuÞ=u.

The free energy functional for the whole lattice includes
the electrostatic energy, the functional form for the energy
of the Yukawa field, the energy of the fixed charges, and the
logarithm of the partition function Zl defined in Eq. (1):
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Writing &F
&" ¼ 0 and &F

&! ¼ 0, we get a system of two
differential equations, which we refer to as the YULP
equations.

(1) A PBL equation [12] in " in which $dip is replaced
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where F1ðuÞ ¼ sinhcðuÞ
u LðuÞ; LðuÞ ¼ 1= tanhðuÞ # 1=u is

the Langevin function.
(2) A second order differential equation in !ð ~rÞ:
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The bulk dipole concentration cbdip verifies
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The YULP equations include five parameters: the lattice
size a, strength p0, bulk concentration cbdip, and the pa-

rameters of the Yukawa field lY and b. We fix a ¼ 2:4 $A.
We set cbdip to 55M, and p0 to its value in solution, i.e.,

2.35 D.
b defines the range of the Yukawa potential; it is usually

set to )=1:8 $A, i.e., to a fraction of the diameter ) of the
hard spheres representing the water [15]. Setting ) ¼ 2:8
gives b ¼ 1:55 $A. Note that full saturation of the lattice
(i.e., with one dipole for each lattice site) leads to a
maximum water density of 1=a3, i.e., approximately twice
the density of bulk water for our choice of a. lY is a
characteristic length that directly relates to the strength
of the potential. We set lY ¼ 7:0 $A (see below).
The two equations (3) and (4) are solved numerically on

a finite domain % with boundaries &%. The domain % is

set to be large enough so that " ¼ 0, ~E ¼ ~0, and ! ¼
!bulk at the boundary &%. The distance between the solute
surface and the boundary is required to be at least 2lB,
where lB is the Bjerrum length (equal to 7 Å in water at
T ¼ 300 K). From Eqs. (4) and (6), we get #!bulk ¼
#lYb

2N Ac
b
dip. With cbdip ¼ 55M and b and lY set to the

values given above, we get #!bulk ¼ #0:55.
We use a self-consistent iterative algorithm to solve for

"ð ~rÞ and !ð ~rÞ. Full details on the algorithm will be pub-
lished separately (see also [12]).
We define !b ¼ N Ac
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dip. The density of dipoles is given

by #@F =@'dip:

!ð~rÞ ¼ !b
e##½!ð ~rÞ#!bulk( sinhcðuÞ

1# !ba
3½1# e##ð!ð~rÞ#!bulkÞ sinhcðuÞ(

(7)

for any position ~r inside the lattice gas. When u ! 0 and
!ð ~rÞ ! !bulk, we get as expected !ð ~rÞ ¼ !b, i.e., the bulk
density of water.
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and bulk concentration cbdip. These water dipoles are dis-

tributed on a lattice to approximate the excluded-volume
effects in the lattice gas formalism, the domain outside the
boundary of the molecule is represented as a three-
dimensional lattice with N uniformly sized cuboids, of
size a3, where a, the lattice spacing, is set to the geomet-
rical dimension of the dipoles. As a first approximation, we
assume that the dipoles are hard spheres of fixed sizes. The
solute is described by a constant charge density !f and a
solvent accessibility function "ð~rÞ that is zero for points
inside the envelope of the solute and one otherwise. This
envelope can be taken as the molecular surface or the
accessible surface of the solute.

Each site in the lattice can contain at most one dipole. If
it is empty, its energy is zero. The energy of one dipole of
constant magnitude p0 at position ~r is obtained as the
Boltzmann-weighted average of the interaction # ~p0 $ ~E
over all orientations of ~p0, where ~E is the local electric
field. To mimic correlation effects between dipoles in a
way compatible with a mean-field approach, we add a
Yukawa field !ð~rÞ to the energy of a dipole present at
position ~r in the lattice. A similar approach was used by
Coalson and colleagues to account for free ions steric
repulsion in their lattice field theory of a Coulomb gas
with finite size particles [13]. This Yukawa field is derived
from a Yukawa potential VYðrÞ ¼ #v0ðe#r=b=rÞ with two
characteristic lengths b and lY ¼ #v0 where# ¼ 1

kBT
. This

Yukawa potential is attractive to account for interactions
between water molecules; we do not consider a repulsive
term, as steric effects are accounted for by the lattice.

Following the formalism introduced by Borukhov et al.
[14], the grand canonical partition function Zlð~rÞ for the
lattice site at position ~r is then given by

Z lð ~rÞ ¼ 1þ $dipe
##!ð ~rÞ sinhcðuÞ; (1)

where $dip is the fugacity of the dipoles, u ¼ #p0j ~Eð ~rÞj
and sinhcðuÞ ¼ sinhðuÞ=u.

The free energy functional for the whole lattice includes
the electrostatic energy, the functional form for the energy
of the Yukawa field, the energy of the fixed charges, and the
logarithm of the partition function Zl defined in Eq. (1):
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The YULP equations include five parameters: the lattice
size a, strength p0, bulk concentration cbdip, and the pa-

rameters of the Yukawa field lY and b. We fix a ¼ 2:4 $A.
We set cbdip to 55M, and p0 to its value in solution, i.e.,

2.35 D.
b defines the range of the Yukawa potential; it is usually

set to )=1:8 $A, i.e., to a fraction of the diameter ) of the
hard spheres representing the water [15]. Setting ) ¼ 2:8
gives b ¼ 1:55 $A. Note that full saturation of the lattice
(i.e., with one dipole for each lattice site) leads to a
maximum water density of 1=a3, i.e., approximately twice
the density of bulk water for our choice of a. lY is a
characteristic length that directly relates to the strength
of the potential. We set lY ¼ 7:0 $A (see below).
The two equations (3) and (4) are solved numerically on

a finite domain % with boundaries &%. The domain % is

set to be large enough so that " ¼ 0, ~E ¼ ~0, and ! ¼
!bulk at the boundary &%. The distance between the solute
surface and the boundary is required to be at least 2lB,
where lB is the Bjerrum length (equal to 7 Å in water at
T ¼ 300 K). From Eqs. (4) and (6), we get #!bulk ¼
#lYb
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dip. With cbdip ¼ 55M and b and lY set to the

values given above, we get #!bulk ¼ #0:55.
We use a self-consistent iterative algorithm to solve for

"ð ~rÞ and !ð ~rÞ. Full details on the algorithm will be pub-
lished separately (see also [12]).
We define !b ¼ N Ac
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for any position ~r inside the lattice gas. When u ! 0 and
!ð ~rÞ ! !bulk, we get as expected !ð ~rÞ ¼ !b, i.e., the bulk
density of water.
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and bulk concentration cbdip. These water dipoles are dis-

tributed on a lattice to approximate the excluded-volume
effects in the lattice gas formalism, the domain outside the
boundary of the molecule is represented as a three-
dimensional lattice with N uniformly sized cuboids, of
size a3, where a, the lattice spacing, is set to the geomet-
rical dimension of the dipoles. As a first approximation, we
assume that the dipoles are hard spheres of fixed sizes. The
solute is described by a constant charge density !f and a
solvent accessibility function "ð~rÞ that is zero for points
inside the envelope of the solute and one otherwise. This
envelope can be taken as the molecular surface or the
accessible surface of the solute.

Each site in the lattice can contain at most one dipole. If
it is empty, its energy is zero. The energy of one dipole of
constant magnitude p0 at position ~r is obtained as the
Boltzmann-weighted average of the interaction # ~p0 $ ~E
over all orientations of ~p0, where ~E is the local electric
field. To mimic correlation effects between dipoles in a
way compatible with a mean-field approach, we add a
Yukawa field !ð~rÞ to the energy of a dipole present at
position ~r in the lattice. A similar approach was used by
Coalson and colleagues to account for free ions steric
repulsion in their lattice field theory of a Coulomb gas
with finite size particles [13]. This Yukawa field is derived
from a Yukawa potential VYðrÞ ¼ #v0ðe#r=b=rÞ with two
characteristic lengths b and lY ¼ #v0 where# ¼ 1

kBT
. This

Yukawa potential is attractive to account for interactions
between water molecules; we do not consider a repulsive
term, as steric effects are accounted for by the lattice.

Following the formalism introduced by Borukhov et al.
[14], the grand canonical partition function Zlð~rÞ for the
lattice site at position ~r is then given by

Z lð ~rÞ ¼ 1þ $dipe
##!ð ~rÞ sinhcðuÞ; (1)

where $dip is the fugacity of the dipoles, u ¼ #p0j ~Eð ~rÞj
and sinhcðuÞ ¼ sinhðuÞ=u.

The free energy functional for the whole lattice includes
the electrostatic energy, the functional form for the energy
of the Yukawa field, the energy of the fixed charges, and the
logarithm of the partition function Zl defined in Eq. (1):

#F ¼##
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Z
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Writing &F
&" ¼ 0 and &F

&! ¼ 0, we get a system of two
differential equations, which we refer to as the YULP
equations.

(1) A PBL equation [12] in " in which $dip is replaced

by $dipe
##!ð ~rÞ:

~r
!
%0 ~r"ð ~rÞþ"ð ~rÞ#p2

0

$dipe
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"
¼#!fð ~rÞ;

(3)

where F1ðuÞ ¼ sinhcðuÞ
u LðuÞ; LðuÞ ¼ 1= tanhðuÞ # 1=u is

the Langevin function.
(2) A second order differential equation in !ð ~rÞ:
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The bulk dipole concentration cbdip verifies
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b
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@'dip

########(¼0;!¼!bulk

; (5)

As $dip ¼ e#'dip , we get

$dip ¼ e#!bulk
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b
dipa

3

1#N Ac
b
dipa

3 : (6)

The YULP equations include five parameters: the lattice
size a, strength p0, bulk concentration cbdip, and the pa-

rameters of the Yukawa field lY and b. We fix a ¼ 2:4 $A.
We set cbdip to 55M, and p0 to its value in solution, i.e.,

2.35 D.
b defines the range of the Yukawa potential; it is usually

set to )=1:8 $A, i.e., to a fraction of the diameter ) of the
hard spheres representing the water [15]. Setting ) ¼ 2:8
gives b ¼ 1:55 $A. Note that full saturation of the lattice
(i.e., with one dipole for each lattice site) leads to a
maximum water density of 1=a3, i.e., approximately twice
the density of bulk water for our choice of a. lY is a
characteristic length that directly relates to the strength
of the potential. We set lY ¼ 7:0 $A (see below).
The two equations (3) and (4) are solved numerically on

a finite domain % with boundaries &%. The domain % is

set to be large enough so that " ¼ 0, ~E ¼ ~0, and ! ¼
!bulk at the boundary &%. The distance between the solute
surface and the boundary is required to be at least 2lB,
where lB is the Bjerrum length (equal to 7 Å in water at
T ¼ 300 K). From Eqs. (4) and (6), we get #!bulk ¼
#lYb

2N Ac
b
dip. With cbdip ¼ 55M and b and lY set to the

values given above, we get #!bulk ¼ #0:55.
We use a self-consistent iterative algorithm to solve for

"ð ~rÞ and !ð ~rÞ. Full details on the algorithm will be pub-
lished separately (see also [12]).
We define !b ¼ N Ac

b
dip. The density of dipoles is given

by #@F =@'dip:

!ð~rÞ ¼ !b
e##½!ð ~rÞ#!bulk( sinhcðuÞ

1# !ba
3½1# e##ð!ð~rÞ#!bulkÞ sinhcðuÞ(

(7)

for any position ~r inside the lattice gas. When u ! 0 and
!ð ~rÞ ! !bulk, we get as expected !ð ~rÞ ¼ !b, i.e., the bulk
density of water.
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and bulk concentration cbdip. These water dipoles are dis-

tributed on a lattice to approximate the excluded-volume
effects in the lattice gas formalism, the domain outside the
boundary of the molecule is represented as a three-
dimensional lattice with N uniformly sized cuboids, of
size a3, where a, the lattice spacing, is set to the geomet-
rical dimension of the dipoles. As a first approximation, we
assume that the dipoles are hard spheres of fixed sizes. The
solute is described by a constant charge density !f and a
solvent accessibility function "ð~rÞ that is zero for points
inside the envelope of the solute and one otherwise. This
envelope can be taken as the molecular surface or the
accessible surface of the solute.

Each site in the lattice can contain at most one dipole. If
it is empty, its energy is zero. The energy of one dipole of
constant magnitude p0 at position ~r is obtained as the
Boltzmann-weighted average of the interaction # ~p0 $ ~E
over all orientations of ~p0, where ~E is the local electric
field. To mimic correlation effects between dipoles in a
way compatible with a mean-field approach, we add a
Yukawa field !ð~rÞ to the energy of a dipole present at
position ~r in the lattice. A similar approach was used by
Coalson and colleagues to account for free ions steric
repulsion in their lattice field theory of a Coulomb gas
with finite size particles [13]. This Yukawa field is derived
from a Yukawa potential VYðrÞ ¼ #v0ðe#r=b=rÞ with two
characteristic lengths b and lY ¼ #v0 where# ¼ 1

kBT
. This

Yukawa potential is attractive to account for interactions
between water molecules; we do not consider a repulsive
term, as steric effects are accounted for by the lattice.

Following the formalism introduced by Borukhov et al.
[14], the grand canonical partition function Zlð~rÞ for the
lattice site at position ~r is then given by

Z lð ~rÞ ¼ 1þ $dipe
##!ð ~rÞ sinhcðuÞ; (1)

where $dip is the fugacity of the dipoles, u ¼ #p0j ~Eð ~rÞj
and sinhcðuÞ ¼ sinhðuÞ=u.

The free energy functional for the whole lattice includes
the electrostatic energy, the functional form for the energy
of the Yukawa field, the energy of the fixed charges, and the
logarithm of the partition function Zl defined in Eq. (1):

#F ¼##

2

Z
d~r%0j ~r"ð~rÞj2

þ #

2v0

Z
d~r
!
j ~r!ð ~rÞj2þ!ð~rÞ2

b2

"

þ#
Z
d~r!fð~rÞ"ð ~rÞ# 1

a3

Z
d~rlnðZlð ~rÞÞ: (2)

Writing &F
&" ¼ 0 and &F

&! ¼ 0, we get a system of two
differential equations, which we refer to as the YULP
equations.

(1) A PBL equation [12] in " in which $dip is replaced

by $dipe
##!ð ~rÞ:
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(3)

where F1ðuÞ ¼ sinhcðuÞ
u LðuÞ; LðuÞ ¼ 1= tanhðuÞ # 1=u is

the Langevin function.
(2) A second order differential equation in !ð ~rÞ:
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The bulk dipole concentration cbdip verifies
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; (5)

As $dip ¼ e#'dip , we get

$dip ¼ e#!bulk
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The YULP equations include five parameters: the lattice
size a, strength p0, bulk concentration cbdip, and the pa-

rameters of the Yukawa field lY and b. We fix a ¼ 2:4 $A.
We set cbdip to 55M, and p0 to its value in solution, i.e.,

2.35 D.
b defines the range of the Yukawa potential; it is usually

set to )=1:8 $A, i.e., to a fraction of the diameter ) of the
hard spheres representing the water [15]. Setting ) ¼ 2:8
gives b ¼ 1:55 $A. Note that full saturation of the lattice
(i.e., with one dipole for each lattice site) leads to a
maximum water density of 1=a3, i.e., approximately twice
the density of bulk water for our choice of a. lY is a
characteristic length that directly relates to the strength
of the potential. We set lY ¼ 7:0 $A (see below).
The two equations (3) and (4) are solved numerically on

a finite domain % with boundaries &%. The domain % is

set to be large enough so that " ¼ 0, ~E ¼ ~0, and ! ¼
!bulk at the boundary &%. The distance between the solute
surface and the boundary is required to be at least 2lB,
where lB is the Bjerrum length (equal to 7 Å in water at
T ¼ 300 K). From Eqs. (4) and (6), we get #!bulk ¼
#lYb

2N Ac
b
dip. With cbdip ¼ 55M and b and lY set to the

values given above, we get #!bulk ¼ #0:55.
We use a self-consistent iterative algorithm to solve for

"ð ~rÞ and !ð ~rÞ. Full details on the algorithm will be pub-
lished separately (see also [12]).
We define !b ¼ N Ac

b
dip. The density of dipoles is given

by #@F =@'dip:

!ð~rÞ ¼ !b
e##½!ð ~rÞ#!bulk( sinhcðuÞ

1# !ba
3½1# e##ð!ð~rÞ#!bulkÞ sinhcðuÞ(

(7)

for any position ~r inside the lattice gas. When u ! 0 and
!ð ~rÞ ! !bulk, we get as expected !ð ~rÞ ¼ !b, i.e., the bulk
density of water.
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and bulk concentration cbdip. These water dipoles are dis-

tributed on a lattice to approximate the excluded-volume
effects in the lattice gas formalism, the domain outside the
boundary of the molecule is represented as a three-
dimensional lattice with N uniformly sized cuboids, of
size a3, where a, the lattice spacing, is set to the geomet-
rical dimension of the dipoles. As a first approximation, we
assume that the dipoles are hard spheres of fixed sizes. The
solute is described by a constant charge density !f and a
solvent accessibility function "ð~rÞ that is zero for points
inside the envelope of the solute and one otherwise. This
envelope can be taken as the molecular surface or the
accessible surface of the solute.

Each site in the lattice can contain at most one dipole. If
it is empty, its energy is zero. The energy of one dipole of
constant magnitude p0 at position ~r is obtained as the
Boltzmann-weighted average of the interaction # ~p0 $ ~E
over all orientations of ~p0, where ~E is the local electric
field. To mimic correlation effects between dipoles in a
way compatible with a mean-field approach, we add a
Yukawa field !ð~rÞ to the energy of a dipole present at
position ~r in the lattice. A similar approach was used by
Coalson and colleagues to account for free ions steric
repulsion in their lattice field theory of a Coulomb gas
with finite size particles [13]. This Yukawa field is derived
from a Yukawa potential VYðrÞ ¼ #v0ðe#r=b=rÞ with two
characteristic lengths b and lY ¼ #v0 where# ¼ 1

kBT
. This

Yukawa potential is attractive to account for interactions
between water molecules; we do not consider a repulsive
term, as steric effects are accounted for by the lattice.

Following the formalism introduced by Borukhov et al.
[14], the grand canonical partition function Zlð~rÞ for the
lattice site at position ~r is then given by

Z lð ~rÞ ¼ 1þ $dipe
##!ð ~rÞ sinhcðuÞ; (1)

where $dip is the fugacity of the dipoles, u ¼ #p0j ~Eð ~rÞj
and sinhcðuÞ ¼ sinhðuÞ=u.

The free energy functional for the whole lattice includes
the electrostatic energy, the functional form for the energy
of the Yukawa field, the energy of the fixed charges, and the
logarithm of the partition function Zl defined in Eq. (1):
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Writing &F
&" ¼ 0 and &F

&! ¼ 0, we get a system of two
differential equations, which we refer to as the YULP
equations.

(1) A PBL equation [12] in " in which $dip is replaced

by $dipe
##!ð ~rÞ:
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where F1ðuÞ ¼ sinhcðuÞ
u LðuÞ; LðuÞ ¼ 1= tanhðuÞ # 1=u is

the Langevin function.
(2) A second order differential equation in !ð ~rÞ:
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The bulk dipole concentration cbdip verifies
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b
dip ¼ # @F

@'dip

########(¼0;!¼!bulk

; (5)

As $dip ¼ e#'dip , we get
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N Ac

b
dipa

3

1#N Ac
b
dipa

3 : (6)

The YULP equations include five parameters: the lattice
size a, strength p0, bulk concentration cbdip, and the pa-

rameters of the Yukawa field lY and b. We fix a ¼ 2:4 $A.
We set cbdip to 55M, and p0 to its value in solution, i.e.,

2.35 D.
b defines the range of the Yukawa potential; it is usually

set to )=1:8 $A, i.e., to a fraction of the diameter ) of the
hard spheres representing the water [15]. Setting ) ¼ 2:8
gives b ¼ 1:55 $A. Note that full saturation of the lattice
(i.e., with one dipole for each lattice site) leads to a
maximum water density of 1=a3, i.e., approximately twice
the density of bulk water for our choice of a. lY is a
characteristic length that directly relates to the strength
of the potential. We set lY ¼ 7:0 $A (see below).
The two equations (3) and (4) are solved numerically on

a finite domain % with boundaries &%. The domain % is

set to be large enough so that " ¼ 0, ~E ¼ ~0, and ! ¼
!bulk at the boundary &%. The distance between the solute
surface and the boundary is required to be at least 2lB,
where lB is the Bjerrum length (equal to 7 Å in water at
T ¼ 300 K). From Eqs. (4) and (6), we get #!bulk ¼
#lYb

2N Ac
b
dip. With cbdip ¼ 55M and b and lY set to the

values given above, we get #!bulk ¼ #0:55.
We use a self-consistent iterative algorithm to solve for

"ð ~rÞ and !ð ~rÞ. Full details on the algorithm will be pub-
lished separately (see also [12]).
We define !b ¼ N Ac

b
dip. The density of dipoles is given

by #@F =@'dip:

!ð~rÞ ¼ !b
e##½!ð ~rÞ#!bulk( sinhcðuÞ

1# !ba
3½1# e##ð!ð~rÞ#!bulkÞ sinhcðuÞ(

(7)

for any position ~r inside the lattice gas. When u ! 0 and
!ð ~rÞ ! !bulk, we get as expected !ð ~rÞ ¼ !b, i.e., the bulk
density of water.
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Equation (7) gives the density of water dipoles surround-
ing the biomolecules in the presence of a Yukawa field to
model a short-range dipole-dipole attraction. We have
computed the dipole densities around 12 proteins
(Protein Data Bank code 1ARB, 1CP4, 1EBD, 1PHP,
1SRP, 2ACS, 2APR, 2CTB, 2DRI, 2EXO, 2FCR, 5NLL).
PDB files for each protein are preprocessed with the pro-
gram PDB2PQR [16] to assign charges and atomic radii
according to the PARSE force field [17]. The electrostatic
potential and Yukawa field are computed on a uniform

Cartesian numerical grid of 1933 points, with spacing h ¼
0:61 !A in all three directions. Global convergence takes
5 min CPU time on a 2.8 GHz Intel Core 2 processor. These
dipole densities are used to compute water radial density
profiles for each type of atom defined in the PARSE
parameter set [17]. The density profiles are computed
numerically on line segments that are normal to the surface
of an atom and that do not intersect other parts of the
protein for at least 15 Å, with steps of size 0.1 Å.

Results are shown in Fig. 1 for neutral oxygens, for
different strengths of the Yukawa field, and in Fig. 2 for
all N, O, and C species, with lY set to 7.0 Å.

Figure 1 shows that increasing the strength of the
Yukawa fields increases the dielectric response of the water
to the fixed charges of the solute. Furthermore, in the
presence of the Yukawa field, at least two water layers
are perturbed by the protein surface, compared to a single
layer when lY ¼ 0. The two peaks in the radial density
profiles are distant from each other by 2.4 Å, i.e., the size of
the lattice that defines the minimal distance in our model
between two water molecules. A comparison of water
simulations in the presence of the Yukawa potential or

the Lennard Jones potential yields lY " 7 !A [15]. For lY ¼
7 !A, the first hydration layer corresponds to a 40% increase
in water density next to oxygen atoms, while the second
hydration layer corresponds to a 10% increase in density.

This is consistent with the properties of water at protein
surface reported from molecular dynamics calculations
[18], as well as from analyzing crystallographic data
[19]. Note however that compared to the experimental
data, the profiles derived from YULP do not present a
significant trough between the two water layers.
Figure 2 shows that the first hydration layer differs,

depending on the proximity of polar or nonpolar solute
atoms. Hydration (i.e., water density) is found to be strong
next to net charged atoms, then weaker next to neutral
polar atoms, and even weaker next to nonpolar atoms.
This is in agreement with data obtained from molecular
dynamics simulations with explicit water [18,20].
To further quantify if YULP provides an accurate picture

of the organization of water around molecules, we define
a posteriori a ‘‘solvation’’ free energy from the dipole
densities using the van der Waals theory of capillarity
[21]. This excess free energy is linearly related to the
integral of the square of the density gradients:

F 1 ¼
m

2

Z
j ~r!ð ~rÞj2d~r (8)

particles where m is the coefficient that relates to the
surface tension [21]. This parameter m is assumed to be
independent of the density !. We tested the power of the
F 1 energy to discriminate native from non-native struc-
tural models of proteins. Two sets of misfolded structures
were considered, i.e., the four pairs of correct and incorrect
folds for haemerythrin and the Ig " VL domain generated
by Novotny and colleagues [22,23], and a larger set of 26
native-misfolded pairs that was later created by Holm and
Sander [24]. We compared the F 1 energies of the mis-
folded models to those of the native structures for two
values of lY , namely, 0 (i.e., no Yukawa field), and 7 Å.
Results are shown in Fig. 3.

2 3 4 5 6 7 8

1

1.5

Distance r from atom center (Angstroms)

g(
r)

 (O
)

l
Y

 = 0
l
Y

 = 2
l
Y

 = 7
l
Y

 = 14

FIG. 1. Water radial density profiles near neutral oxygens, as a
function of the distance to the center of the atom, for different
strengths of the Yukawa field. Experimental values derived from
x-ray crystallographic data [19] are shown as open circles.
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FIG. 2 (color). Water radial density profiles as a function of the
distance to the center of the atom, for all N, O, and C of the
PARSE data set. The characteristic length defining the strength
of the Yukawa field lY is set to 7.0 Å. For clarity, the profiles are
shown over one characteristic length. All curves converge to a
value of 1 (i.e., bulk water) for large distances.
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F1(u) ) [sinh(u)/u2]L(u) and L(u) ) 1/tanh(u) - 1/u is the
Langevin function.

The PL equation includes three parameters: the bulk dipole
concentration, cdip

b , the dipole strength, p0, and the lattice size,
a. We set cdip

b to 55 M, p0 to its value in solution, i.e., 2.35 D,
and a to approximately the diameter of a water molecule, i.e.,
3.0 Å. Using these values, we compute the electrostatics
contribution to the solvation free energies of five monovalent
(Li+, Na+, K+, Rb+, Cs+) and five divalent (Mg2+, Mn2+, Ca2+,
Sr2+, Ba2+) cations. Equation 3 is solved numerically on a cubic
grid with 2573 vertices, with two adjacent vertices distant by
0.08 Å. Comparisons of the resulting values with those
computed using the Born equation and the corresponding
experimental values are shown in Figure 1 and Table 1. We
also provide in the latter the solvation free energies of the same
ions computed with three other implicit solvent models that
modify the dielectric profile in the neighborhood of the ions,
namely, theLangevindipolemodelofWarshelandco-workers,12,15

the mean sphere approximation model (MSA) of Wertheim16

and Chan et al.,13 and the charge-dependent Langevin-Debye
model (qLD) of Jha and Freed.14

As previously observed,1,17 the Born equation systematically
overestimates the ion solvation free energy. The agreement
between the experimental solvation free energy and the Born
energy computed with eq 1 can be improved by considering
the radius of the ion as a parameter, thereby defining an effective
Born radius. Using this approach, Babu and Lim obtained a
much better fit, with an rms between the computed solvation
free energies and the corresponding experimental values of 3
kcal/mol.1 In this approach, however, the Born radius is adjusted
differently for each ion type, leading to a large number of
parameters, which casts doubt on its potential extension to larger
systems. Another option is to increase the contribution of the
solvent by reducing its dielectric constant. We tested ε ) 20
instead of 80 and only observed a marginal improvement.

The Langevin dipole model, as developed by Warshel and
co-workers,12,15,18 treats the solvent molecules as polarizable
point dipoles; the position of these dipoles is kept fixed (usually
defined by a 3D grid around the solute), while their strength
and orientation are optimized simultaneously, accounting for
the solute and interactions between the dipoles. The solvation
free energy is then computed as the sum of the contribution of

Figure 1. Comparing experimental and computed ion solvation free energies. The experimental values are taken from Burgess,10 and the ionic
radii are taken from Cotton and Wilkinson.11 The Born solvation energies are computed using 1 with ε ) 80 and ε ) 20. The PL solvation energies
are computed by solving eq 3 with a ) 3 Å and p0 ) 2.35 D. The solid line shows the first diagonal (i.e., perfect match).

TABLE 1: Computed versus Experimental Solvation Free Energies of Ions

ion radiusa (Å) ∆Gexp
b

(kcal/mol)
∆GPL

c

(kcal/mol)
∆GBorn80

d

(kcal/mol)
∆GBorn20

e

(kcal/mol)
∆GW

f

(kcal/mol)
∆GMSA

g

(kcal/mol)
∆GqLD

h

(kcal/mol)

Li+ 0.78 -122.1 -132.7 -210.0 -202.1 -223.1 -122.0 -142.5
Na+ 0.98 -98.2 -114.1 -167.2 -160.8 -210.8 -106.0 -121.5
K+ 1.33 -80.6 -94.8 -123.2 -118.5 -177.3 -86.5 -98.2
Rb+ 1.49 -75.5 -88.5 -110.0 -105.0 -162.3 -79.8 -90.6
Cs+ 1.65 -67.8 -82.4 -99.3 -95.5 -149.4 -74.0 -84.1
Mg2+ 0.78 -455.5 -474.5 -840.2 -808.3 -555.5 -487.9 -517.2
Mn2+ 0.91 -437.8 -422.4 -720.2 -692.9 -552.5 -444.8 -462.0
Ca2+ 1.06 -380.8 -377.3 -618.3 -594.8 -537.5 -403.8 -414.3
Sr2+ 1.27 -345.9 -333.0 -516.0 -496.5 -517.3 -357.5 -365.1
Ba2+ 1.43 -315.5 -307.5 -458.0 -440.9 -493.0 -328.8 -336.4
RMSi (kcal/mol) 14 187 169 124 15 28

a Goldschmidt ionic radius from Cotton and Wilkinson.11 b Experimental values from Burgess.10 c This work (see text for details). d Born
solvation energy computed using eq 1 with ε ) 80. e Born solvation energy computed using eq 1 with ε ) 20. f Solvation free energies using
Warshel’s Langevin dipole model, computed using ChemSol.12 g Computed using the MSA approximation.13 h Computed using the
charge-dependent Langevin-Debye model.14 i Root mean square deviation between computed and experimental solvation free energies,
averaged over all 10 ions.
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F1(u) ) [sinh(u)/u2]L(u) and L(u) ) 1/tanh(u) - 1/u is the
Langevin function.

The PL equation includes three parameters: the bulk dipole
concentration, cdip

b , the dipole strength, p0, and the lattice size,
a. We set cdip

b to 55 M, p0 to its value in solution, i.e., 2.35 D,
and a to approximately the diameter of a water molecule, i.e.,
3.0 Å. Using these values, we compute the electrostatics
contribution to the solvation free energies of five monovalent
(Li+, Na+, K+, Rb+, Cs+) and five divalent (Mg2+, Mn2+, Ca2+,
Sr2+, Ba2+) cations. Equation 3 is solved numerically on a cubic
grid with 2573 vertices, with two adjacent vertices distant by
0.08 Å. Comparisons of the resulting values with those
computed using the Born equation and the corresponding
experimental values are shown in Figure 1 and Table 1. We
also provide in the latter the solvation free energies of the same
ions computed with three other implicit solvent models that
modify the dielectric profile in the neighborhood of the ions,
namely, theLangevindipolemodelofWarshelandco-workers,12,15

the mean sphere approximation model (MSA) of Wertheim16

and Chan et al.,13 and the charge-dependent Langevin-Debye
model (qLD) of Jha and Freed.14

As previously observed,1,17 the Born equation systematically
overestimates the ion solvation free energy. The agreement
between the experimental solvation free energy and the Born
energy computed with eq 1 can be improved by considering
the radius of the ion as a parameter, thereby defining an effective
Born radius. Using this approach, Babu and Lim obtained a
much better fit, with an rms between the computed solvation
free energies and the corresponding experimental values of 3
kcal/mol.1 In this approach, however, the Born radius is adjusted
differently for each ion type, leading to a large number of
parameters, which casts doubt on its potential extension to larger
systems. Another option is to increase the contribution of the
solvent by reducing its dielectric constant. We tested ε ) 20
instead of 80 and only observed a marginal improvement.

The Langevin dipole model, as developed by Warshel and
co-workers,12,15,18 treats the solvent molecules as polarizable
point dipoles; the position of these dipoles is kept fixed (usually
defined by a 3D grid around the solute), while their strength
and orientation are optimized simultaneously, accounting for
the solute and interactions between the dipoles. The solvation
free energy is then computed as the sum of the contribution of

Figure 1. Comparing experimental and computed ion solvation free energies. The experimental values are taken from Burgess,10 and the ionic
radii are taken from Cotton and Wilkinson.11 The Born solvation energies are computed using 1 with ε ) 80 and ε ) 20. The PL solvation energies
are computed by solving eq 3 with a ) 3 Å and p0 ) 2.35 D. The solid line shows the first diagonal (i.e., perfect match).

TABLE 1: Computed versus Experimental Solvation Free Energies of Ions

ion radiusa (Å) ∆Gexp
b

(kcal/mol)
∆GPL

c

(kcal/mol)
∆GBorn80

d

(kcal/mol)
∆GBorn20

e

(kcal/mol)
∆GW

f

(kcal/mol)
∆GMSA

g

(kcal/mol)
∆GqLD

h

(kcal/mol)

Li+ 0.78 -122.1 -132.7 -210.0 -202.1 -223.1 -122.0 -142.5
Na+ 0.98 -98.2 -114.1 -167.2 -160.8 -210.8 -106.0 -121.5
K+ 1.33 -80.6 -94.8 -123.2 -118.5 -177.3 -86.5 -98.2
Rb+ 1.49 -75.5 -88.5 -110.0 -105.0 -162.3 -79.8 -90.6
Cs+ 1.65 -67.8 -82.4 -99.3 -95.5 -149.4 -74.0 -84.1
Mg2+ 0.78 -455.5 -474.5 -840.2 -808.3 -555.5 -487.9 -517.2
Mn2+ 0.91 -437.8 -422.4 -720.2 -692.9 -552.5 -444.8 -462.0
Ca2+ 1.06 -380.8 -377.3 -618.3 -594.8 -537.5 -403.8 -414.3
Sr2+ 1.27 -345.9 -333.0 -516.0 -496.5 -517.3 -357.5 -365.1
Ba2+ 1.43 -315.5 -307.5 -458.0 -440.9 -493.0 -328.8 -336.4
RMSi (kcal/mol) 14 187 169 124 15 28

a Goldschmidt ionic radius from Cotton and Wilkinson.11 b Experimental values from Burgess.10 c This work (see text for details). d Born
solvation energy computed using eq 1 with ε ) 80. e Born solvation energy computed using eq 1 with ε ) 20. f Solvation free energies using
Warshel’s Langevin dipole model, computed using ChemSol.12 g Computed using the MSA approximation.13 h Computed using the
charge-dependent Langevin-Debye model.14 i Root mean square deviation between computed and experimental solvation free energies,
averaged over all 10 ions.
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F1(u) ) [sinh(u)/u2]L(u) and L(u) ) 1/tanh(u) - 1/u is the
Langevin function.

The PL equation includes three parameters: the bulk dipole
concentration, cdip

b , the dipole strength, p0, and the lattice size,
a. We set cdip

b to 55 M, p0 to its value in solution, i.e., 2.35 D,
and a to approximately the diameter of a water molecule, i.e.,
3.0 Å. Using these values, we compute the electrostatics
contribution to the solvation free energies of five monovalent
(Li+, Na+, K+, Rb+, Cs+) and five divalent (Mg2+, Mn2+, Ca2+,
Sr2+, Ba2+) cations. Equation 3 is solved numerically on a cubic
grid with 2573 vertices, with two adjacent vertices distant by
0.08 Å. Comparisons of the resulting values with those
computed using the Born equation and the corresponding
experimental values are shown in Figure 1 and Table 1. We
also provide in the latter the solvation free energies of the same
ions computed with three other implicit solvent models that
modify the dielectric profile in the neighborhood of the ions,
namely, theLangevindipolemodelofWarshelandco-workers,12,15

the mean sphere approximation model (MSA) of Wertheim16

and Chan et al.,13 and the charge-dependent Langevin-Debye
model (qLD) of Jha and Freed.14

As previously observed,1,17 the Born equation systematically
overestimates the ion solvation free energy. The agreement
between the experimental solvation free energy and the Born
energy computed with eq 1 can be improved by considering
the radius of the ion as a parameter, thereby defining an effective
Born radius. Using this approach, Babu and Lim obtained a
much better fit, with an rms between the computed solvation
free energies and the corresponding experimental values of 3
kcal/mol.1 In this approach, however, the Born radius is adjusted
differently for each ion type, leading to a large number of
parameters, which casts doubt on its potential extension to larger
systems. Another option is to increase the contribution of the
solvent by reducing its dielectric constant. We tested ε ) 20
instead of 80 and only observed a marginal improvement.

The Langevin dipole model, as developed by Warshel and
co-workers,12,15,18 treats the solvent molecules as polarizable
point dipoles; the position of these dipoles is kept fixed (usually
defined by a 3D grid around the solute), while their strength
and orientation are optimized simultaneously, accounting for
the solute and interactions between the dipoles. The solvation
free energy is then computed as the sum of the contribution of

Figure 1. Comparing experimental and computed ion solvation free energies. The experimental values are taken from Burgess,10 and the ionic
radii are taken from Cotton and Wilkinson.11 The Born solvation energies are computed using 1 with ε ) 80 and ε ) 20. The PL solvation energies
are computed by solving eq 3 with a ) 3 Å and p0 ) 2.35 D. The solid line shows the first diagonal (i.e., perfect match).

TABLE 1: Computed versus Experimental Solvation Free Energies of Ions

ion radiusa (Å) ∆Gexp
b

(kcal/mol)
∆GPL

c

(kcal/mol)
∆GBorn80

d

(kcal/mol)
∆GBorn20

e

(kcal/mol)
∆GW

f

(kcal/mol)
∆GMSA

g

(kcal/mol)
∆GqLD

h

(kcal/mol)

Li+ 0.78 -122.1 -132.7 -210.0 -202.1 -223.1 -122.0 -142.5
Na+ 0.98 -98.2 -114.1 -167.2 -160.8 -210.8 -106.0 -121.5
K+ 1.33 -80.6 -94.8 -123.2 -118.5 -177.3 -86.5 -98.2
Rb+ 1.49 -75.5 -88.5 -110.0 -105.0 -162.3 -79.8 -90.6
Cs+ 1.65 -67.8 -82.4 -99.3 -95.5 -149.4 -74.0 -84.1
Mg2+ 0.78 -455.5 -474.5 -840.2 -808.3 -555.5 -487.9 -517.2
Mn2+ 0.91 -437.8 -422.4 -720.2 -692.9 -552.5 -444.8 -462.0
Ca2+ 1.06 -380.8 -377.3 -618.3 -594.8 -537.5 -403.8 -414.3
Sr2+ 1.27 -345.9 -333.0 -516.0 -496.5 -517.3 -357.5 -365.1
Ba2+ 1.43 -315.5 -307.5 -458.0 -440.9 -493.0 -328.8 -336.4
RMSi (kcal/mol) 14 187 169 124 15 28

a Goldschmidt ionic radius from Cotton and Wilkinson.11 b Experimental values from Burgess.10 c This work (see text for details). d Born
solvation energy computed using eq 1 with ε ) 80. e Born solvation energy computed using eq 1 with ε ) 20. f Solvation free energies using
Warshel’s Langevin dipole model, computed using ChemSol.12 g Computed using the MSA approximation.13 h Computed using the
charge-dependent Langevin-Debye model.14 i Root mean square deviation between computed and experimental solvation free energies,
averaged over all 10 ions.
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Application: hydratation 
of proteins

• Fixed protein (taken from the PDB)

• water: dipoles+ Yukawa

• small ions: Na, Cl, ...

• Web Server: PDB Hydro

http://lorentz.immstr.pasteur.fr/pdb_hydro.php

http://lorentz.immstr.pasteur.fr


Fig. 1.
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As an illustration of the usefulness of the method, we give
two examples where the knowledge of the water density pro-
file clearly correlates with known molecular properties. One is
a homodimeric protein (4TMK) whose preferred sites of
hydration clearly are excluded from the dimerization zone
(Figure 2A). The other is the KcsA membrane protein,
where again the lipid binding region is clearly highlighted
in the colored surface output by the program and displayed
using a simple PyMol script (Figure 2B). We have checked
the generality of these results on a number of different
homodimeric and membrane proteins, which will be

reported elsewhere (C. Azuara, H. Orland and M. Delarue,
unpublished data).

In addition to the dipole density map, we can calculate
the radial solvent density profile, as a function of the nearest
surface atom type (C, N or O). The resulting profiles (Sup-
plementary Data) indeed show the expected behavior, with a
higher hydration peak for N and O, compared to C atoms.

CONCLUSION AND FUTURE WORK

In the present state of the server, the user can calculate the
electrostatic properties of a macromolecule (protein or a
nucleic acid) using a new methodology which effectively
merges the two existing PBE and LDPD methods. The solvent
is accounted for by an assembly of non-overlapping orientable
dipoles of variable density. The major advantage of the
method is that it generates a solvent density map and a variable
dielectic constant map of the solvent. All parameters of the
theory are given their physical values. Already, this has proved
useful for identifying hydrophobic patches on the surface of
proteins.

A number of options and refinements of the method are
currently under way; they include: (i) the possibility to
have a pH-dependency of the solute charges (30), (ii) the
possibility to include the effect of the flexibility of the solute
molecule in a dielectric response described by Normal Modes,

A B

Figure 2. (A) Coloredmolecular surface of thymidine kinase 4TMK(as amonomer) as a functionof surface area buried upon addition ofwatermolecules in the peaks
of the solvent densitymap. The dimerization area appears as the largest poorly solvated (red) patch.Drawnwith PyMol (27) (http://pymol.sourceforge.net). (B) KcsA
membrane protein: molecular surface and added water molecules at preferred hydration sites. Drawn with PyMol (27) (http://pymol.sourceforge.net). [Supple-
mentary Figure: Radial density profile of the solvent as a function of the surface atom type (see text)].

Table 1. CPU needed for the GPBLE solver in different grid conditions.

Comparison with APBS

Grid
size

Nb
lB

Grid
spacing (Å)

GPBLE PBE (APBS)
CPU
time (s)

DGelec
sol ðkTÞ CPU

time (s)
DGelec

sol ðkTÞ

333 1 2.0 34.5 #4581.4 3.5 #3947.3
333 2 2.6 33.5 #5018.4 2.9 #3190.7
333 3 3.0 30.7 #4956.4 2.2 #2813.4
653 1 1.0 295.7 #3579.0 14.8 #3944.3
653 2 1.3 291.2 #3717.9 18.7 #3957.0
653 3 1.5 298.5 #3832.8 17.6 #3940.6
1293 1 0.5 4759.3 #3261.5 94.3 #4030.7
1293 2 0.65 4788.5 #3291.0 84.0 #3994.4
1293 3 0.75 4854.2 #3326.7 102.9 #3974.4
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Aquasax

• Compute SAXS profiles of given protein 
structures.

• Given a protein structure, compute the 
hydration layer
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ABSTRACT

Small Angle X-ray Scattering (SAXS) techniques are
becoming more and more useful for structural biologists
and biochemists, thanks to better access to dedicated
synchrotron beamlines, better detectors and the relative
easiness of sample preparation. The ability to compute the
theoretical SAXS profile of a given model, and to compare
this profile with the measured scattering intensity, yields
crucial structural informations about the macromolecule
under study and/or its complexes in solution. An important
contribution to the profile, besides the macromolecule itself
and its solvent-excluded volume, is the excess density due to
the hydration layer. AquaSAXS takes advantage of recently
developed methods, such as AquaSol, that give the equili-
brium density map around macromolecules, to compute an
accurate SAXS/WAXS profile of a given structure and to
compare it to the experimental one. Here, we describe the
interface architecture and capabilities of the AquaSAXS web
server (http://lorentz.dynstr.pasteur.fr/aquasaxs.php).

INTRODUCTION

Small Angle X-ray Scattering (SAXS) is a technique that
allows the study of the structure and interactions of biological
molecules in solution. It can be used to probe proteins, nucleic
acids, and their complexes under a variety of conditions,
from near physiological to highly denaturing, without the
need to crystallize the sample and without the molecular
weight limitations inherent in other methods such as NMR
spectroscopy.

The increasing availability of high-flux, third-generation
synchrotron sources, improvements in detector hardware, and
algorithmic developments for data analysis have made SAXS
a technique of choice for a range of biological applications (1).
The basic principle of SAXS is to scatter X-ray photons
elastically off molecules in solution, and to record the
scattering intensity as a function of the scattering angle. The
intensity profile of the buffer is subtracted from the profile of

⇤To whom correspondence should be addressed. Tel: +33 145688605; Fax: +33 140613793; Email: marc.delarue@pasteur.fr

the macromolecule in the buffer, yielding an excess intensity
profile, related to the excess electronic density of the molecule
and its environment.
The SAXS profile provides information about the global
structure and conformation of the studied molecule(s). Several
reviews on the physical principles and theory of SAXS
describe in detail how the scattering data can be analyzed
and how different parameters can be fit and interpreted (2)-
(6). Recent developments and novel applications of SAXS are
described in (7)-(9).

Existing computational approaches for modeling a
macromolecular structure based on its SAXS profile can
be separated into two classes: profile-to-model (ab initio
methods) and model-to-profile approaches. The former aims
at proposing coarse shapes represented by dummy beads that
fit the experimental profile (10)-(16), while the latter aims at
comparing the theoretical profile of a given atomic or coarse
grained model to the experimental one (17, 18).
The model-to-profile approach consists in computing the
theoretical profile of a given atomic structure and providing
a measure of the goodness-of-fit to the experimental profile.
Here, we describe a web server (AquaSAXS) that performs
this task. It is useful for many applications where one needs to
decide whether the proposed model is in agreement with the
experiment, and to make assumptions about why they differ,
if they do.

Several tools have been designed for that purpose,
following various methods (19)-(24). To our knowledge,
the most accurate method to date for computing SAXS
profiles of a given macromolecule has been achieved by
treating the solvent (excluded and hydrating) explicitely (23).
Through this method, even higher resolution profiles resulting
from Wide Angle X-Ray Scattering (WAXS) experiments
were also reasonably reproduced. However, this approach
requires hours of computation to retrieve one profile. All
other methods rely on a continuum representation of the
solvent-excluded volume, first proposed by Fraser and

c� XXXX The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
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one, two, or three bound hydrogens, oxygen with zero or one
bound hydrogen, sulfur with zero or one bound hydrogen,
and phosphorus. Once the atomic type of atom j has been
recognized, its position r

j

is stored and it is assigned the
corresponding form factor f

j

, excluded volume V

j

and radius
r

j

. On the ”Flowchart” web-page, the user is given the
possibility to check whether the atomic types of the residues
in the provided PDB/PQR file can be recognized. If the user
wants to define other atomic types than those listed above,
two optional files can be given as input to the program: one
listing the atom types of a given residue, the other listing the
atomic parameters of new atom types.

Several other options/parameters can be set: the maximum
q-value considered, the sampling resolution of the profile, the
bulk average electron density (in e.Å�3), the subset chains in
the structure to be considered, as well as the values of C1 and
C2 in the non-fitting mode.
The computation is performed in real time and the browser
is redirected to the result’s page when the calculation has
finished. If an e-mail address is provided, an e-mail will be
sent to the user. Depending on the system’s size and server’s
queue load, the typical running time ranges from less than a
minute to a few minutes. The result’s page displays a plot
of the computed profile (see Fig.2), superimposed to the
experimental profile, if provided, as well as the run logfile.
Links to three output files are displayed, to retrieve the logfile,
the profile file, and a PDB file listing all the atoms that have
been considered in the calculation. Possibly, links toward the
output files of AquaSol are displayed too (computed solvent
map and logfile).

CONCLUSION

We have described a program that allows structural biologists
to compare their SAXS data to the theoretical one for a model
given as a PDB or PQR file. Its major novelty resides in
the possibility to better model the hydration layer through a
physically sound representation of the solvent density map,
combined with the use of the cubature method for spherical
averaging. The user-friendly interface allows to modify (or
add new entries to) the list of scatterers and their parameters.
Future developments will allow for the possibility to refine the
coordinates of the model against the experimental data. In that
case, care must be taken to use as few degrees of freedom
as possible. One possibility is to restrict the deformation
of the model along a small number of ”essential” normal
modes within the framework of the Elastic Network Model
(35). Also, the possibility to fit the data with a mixture of
several distinct structural models will be explored. In the latter
case, the weights of the different models can be refined as
described in (36), using a thermodynamic refinement method.
Finally, the possibility to compute the theoretical anomalous
SAXS profile of a solute containing atoms with anomalous
contribution (e.g. Bromide or Cesium ions) will be made
available soon.

Figure 2. Typical result of AquaSAXS on Urate Oxidase. The deposited structure
3L8W was used as model. The PQR file was generated with PDB2PQR(34), using
CHARMM parameters. The solvent map was generated with AquaSol. 65 points per
edge, equally spaced by 2.2Å define the cubic grid (using a higher resolution map did
not significantly improve the fit). The solute was immersed in an ion atmosphere of 0.1M
NaCl, and the solute region was defined by its solvent-accessible surface (with a probe
radius of 1.4Å). One of the profile displayed here (in blue) was output by AquaSAXS
after fitting, along with the fitting parameters: C1=1.021and C2=1.022. The goodness of
fit is: � = 1.69. The computation took less than 5 minutes. 9436 atoms were considered.
The profiles fitted using FoXS (green) and CRYSOL (orange) are shown for comparison.
Their respective values for the goodness-of-fit � is 2.46 and 1.53. FoXS used C1=1.09
and C2=2.9 as fitting parameters, while CRYSOL used �⇢=0.025, Ra=1.560 Å and Vol
=179,493 Å3 (which corresponds to a volume 20% more important than the volume
actually deduced from the average radius Ra). Additional parameters for CRYSOL were
the use of up to the 30th order of spherical harmonics, and 18th order for the Fibonacci
grid. In every case, the bulk density was set at 0.334 e.Å�3.The figure in inset displays
the goodness-of-fit computed by AquaSAXS for the range of C1 and C2 scanned by the
program. Only values of � between the minimum and 6 are shown, for clarity.
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What happens when one adds salt to a 
dielectric fluid?

• Dielectric constant is the response of the 
system to an external electric field.

• Water has a high dielectric constant 
because water molecules are dipoles and 
can orient in an external electric field.

Effects of fluctuations: 
Beyond Poisson-Boltzmann

It is possible to compute the corrections to 
one loop order in simple cases: 
EDL (with R. Netz), …



• When one adds ions in the solution, they 
polarize the water molecules

Hydration 
shell

Polarized water molecules are less orientable and 
contribute less to the dielectric constant

dielectric constant decrement

+



A single ion in a dipolar liquid

• Assume low ion concentration. One can 
look at a single ion in water

Inserting the above relation into (4.6), and integrating over the angle ϕ yields:

〈
λDp0 ·∇e−p0·E

〉
=

=

∫ 1

−1
d cos θ

∫ 2π

0
dϕλDp0 ·∇e−p0|E| cos θ

=
1

2
λDp0∇

[
Ê

∫ 1

−1
d cos θ cos θe−p0E cos θ

]
. (4.9)

If we define a function G(u) =
∫ 1
−1 dxu exp(ux), we can write the Dipolar Poisson-Boltzmann

equation:

−ϵ0∇2φ = λDp0∇ · [ ∇φ

|∇Ψ|G(βp0|∇φ|)] + λsqs sinh(βqsφ(r). (4.10)

The function G can be brought to a analytical form:

G(u) ≡ 1

2

∫ 1

−1
dxu sinh(ux)

=
1

2

(
x coshux

u
− sinhux

u2

)∣∣∣∣
1

−1

=
coshu

u
− sinhu

u2
. (4.11)

It is connected to the Langevin function by: G(u) = L(u) cot(u)/u.

4.2 Ionic solution model

The DPB equation (4.10) is a mean-field equation, and thus the contributions of the dipoles

and charged particles are separated. The dielectric decrement that is evident by experiments,

cannot be seen directly from the DPB model. However, since the particle nature of the medium

is considered, the model allows for a variable dielectric constant. We can see how the ions

affect the dielectric constant by choosing a model where the ions are set at fixed positions in a

dielectric medium. The dipoles can move around, and will be treated using the DPB equation

with boundary conditions set by the ions. To simplify the model we assume that the distance

between any two ions is very large, and calculate the dielectric constant around each ion by

neglecting all other ions.

We first add a source term ρf (r) to (4.10):

−ϵ0∇2φ = ndp0∇ ·
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The source term is a charge density of a point particle which is placed at the origin,

ρf (r) = qδ(r). Since we examine the ionic effect through the source term, we omit the second

term in RHS the DPB equation:

−ϵ0∇E = ndp0∇ ·
[
ÊG(βp0E)

]
+ ρf (r). (4.13)

An analytical solution of the above non-linear PDE is probably impossible. The solution

in the linear regime is simple, but will not give any new effect. In order to find an analytical
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where the function h(u) is obtained by solving a cubic
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The length, l2h = lBd/
⌥

10 in Eq. (11), depends both
on the dipole size d = p0/q and the Bjerrum length,
lB = e2/4⌥�kBT . It is the only length scale in the prob-
lem characterizing the hydration shell thickness as can
be seen from the behavior of ⌅(r) (inset of Fig. 1). In
the vicinity of the ion (r ⇤ lh), the dielectric response
is very small and it smoothly rises to bulk values as the
influence of the ion decreases, within distances of a few
lh.

By averaging � of Eq. (11) over a sphere of radius R
around each ion, and equating R with the typical dis-
tance between two ions, (2cs)�1/3/2, at concentration
cs, we obtain the expression of ⇧�(cs)⌃. As can be seen in
Fig. 1, the non-linear dielectric decrement is reproduced
and fits rather well the experimental data for RbCl and
CsCl salts of Ref. [19]. For low salt concentration, the
averaging of � can be done analytically and results in a
linear decrement with ⇥ ⌅ 110⌅DPB l3h, which is propor-
tional to the hydration shell volume. Using parameter
values as in Fig. 1, we get ⇥ ⌅ 17�0.
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FIG. 1: (color online). The dielectric constant ⇥�⇤ averaged
inside a specific volume around a single ion (solid line) as func-
tion of ionic concentration, cs. The comparison is done with
experimental values for RbCl (empty circles) and CsCl (full cir-
cles) [19]. In the inset, the exact (solid line) and approximated
(dashed, Eq. (11)) solutions of the DPB equation, Eq. (9) are
shown as function of the distance r from a point charge (ion).
Choosing as a fit parameter the dipole moment of water to be
p0 = 4.8D (instead of the physical value p0 = 1.8D) [23], allows
us to obtain �DPB = 80�0 and lh � 1.5 Å.

So far in order to induce the necessary ion-dipole cor-

relations, we had to rely on calculating the dielectric re-
sponse around a single fixed ion, which gives the dielec-
tric decrement in an approximated way. Moreover, the
validity of the DPB theory can be justified only in the
dilute limit, where the dipole-dipole fluctuations are not
important.

To overcome this limitation a more complete treat-
ment of the statistical mechanics of ionic and dipolar
degrees of freedom (including their interactions) is de-
veloped. We generalize the Debye-Hückel approximation
to dipolar systems in presence of salt, via a loop expan-
sion [24, 25] of the Gibbs free-energy, G = GDPB + ⇥G.
To one-loop order the calculation of ⇥G yields:
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1
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�
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To get a consistent expression for the dielectric con-
stant we need to pay extra attention in the loop expan-
sion to the expressions of the ion and dipole activities,
⌃s and ⌃d. While at mean-field level ⌃s and ⌃d are equal
to the ion and dipole (water) densities, cs and cd, respec-
tively, their corrections are derived by expanding Eq. (3)
to one-loop order. To this order, only the correction to ⌃d

will a⌅ect the mean-field value of the dielectric constant,
�DPB , and is written as

⌃d = cd �
2⌥

3a3
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�DPB

⇧
1� 3

4⌥2
(⇧Da)2
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, (15)

where a is a microscopic cuto⌅ length and ⇧D =
⌥

8⌥lBcs

is the inverse Debye length. The origin of the cuto⌅ in
our formulation is related to the fact that Coulombic in-
teractions diverge at zero distance, while in reality such
a divergence is avoided because of steric repulsion. An
alternative elegant way of avoiding the divergence is to
use the self-energy regulating technique [26]. However
for the sake of simplicity, we use the cuto⌅ length a,
which is related to the minimal distance between adjacent
dipoles and charges, and thus indirectly also to the size
of dipoles and ions. By introducing a minimal distance,
we also avoid unphysically high dipolar concentrations in
the vicinity of the ions.

We can now calculate consistently the corrections to
the dielectric constant up to one-loop order. The correc-
tion term can be split into water and salt contributions,
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FIG. 1: (color online). The dielectric constant ⇥�⇤ averaged
inside a specific volume around a single ion (solid line) as func-
tion of ionic concentration, cs. The comparison is done with
experimental values for RbCl (empty circles) and CsCl (full cir-
cles) [19]. In the inset, the exact (solid line) and approximated
(dashed, Eq. (11)) solutions of the DPB equation, Eq. (9) are
shown as function of the distance r from a point charge (ion).
Choosing as a fit parameter the dipole moment of water to be
p0 = 4.8D (instead of the physical value p0 = 1.8D) [23], allows
us to obtain �DPB = 80�0 and lh � 1.5 Å.

So far in order to induce the necessary ion-dipole cor-

relations, we had to rely on calculating the dielectric re-
sponse around a single fixed ion, which gives the dielec-
tric decrement in an approximated way. Moreover, the
validity of the DPB theory can be justified only in the
dilute limit, where the dipole-dipole fluctuations are not
important.

To overcome this limitation a more complete treat-
ment of the statistical mechanics of ionic and dipolar
degrees of freedom (including their interactions) is de-
veloped. We generalize the Debye-Hückel approximation
to dipolar systems in presence of salt, via a loop expan-
sion [24, 25] of the Gibbs free-energy, G = GDPB + ⇥G.
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stant we need to pay extra attention in the loop expan-
sion to the expressions of the ion and dipole activities,
⌃s and ⌃d. While at mean-field level ⌃s and ⌃d are equal
to the ion and dipole (water) densities, cs and cd, respec-
tively, their corrections are derived by expanding Eq. (3)
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where a is a microscopic cuto⌅ length and ⇧D =
⌥

8⌥lBcs

is the inverse Debye length. The origin of the cuto⌅ in
our formulation is related to the fact that Coulombic in-
teractions diverge at zero distance, while in reality such
a divergence is avoided because of steric repulsion. An
alternative elegant way of avoiding the divergence is to
use the self-energy regulating technique [26]. However
for the sake of simplicity, we use the cuto⌅ length a,
which is related to the minimal distance between adjacent
dipoles and charges, and thus indirectly also to the size
of dipoles and ions. By introducing a minimal distance,
we also avoid unphysically high dipolar concentrations in
the vicinity of the ions.

We can now calculate consistently the corrections to
the dielectric constant up to one-loop order. The correc-
tion term can be split into water and salt contributions,
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2

linear decrement regime.
Although our formulation is very general, in this Let-

ter we focus on the dielectric constant variation for ionic
solutions. The solvent (water) is modeled as a liquid of
point-like permanent dipoles of dipolar moment p0 and
the symmetric 1:1 monovalent salt as a liquid of point-like
charges, ±e. Using the standard Hubbard-Stratonovich
transformation [22], the grand-canonical partition func-
tion Z and free energy F = ���1 log Z[⇧(r)] in presence
of an external charge distribution ⇧(r) can be written
as a functional integral over the real field ⌃(r) that is
conjugate to ⇧(r)

Z[⇧(r)] =
⌃

D⌃(r) exp
⇥
��

⌃
d3r f(⌃(r))

� i�

⌃
d3r⌃(r)⇧(r)

⇤
(1)

with

�f(⌃(r)) =
�⌥0

2
[⌦⌃(r)]2 � 2⌅s cos[�e⌃(r)]

�⌅d
sin(�p0|⌦⌃(r)|)

�p0|⌦⌃(r)| , (2)

where � = 1/kBT , and kBT is the thermal energy. The
activity coe⌅cients of the salt ⌅s and water ⌅d are de-
termined by solving the implicit equations

⌅s

V

↵

↵⌅s
log Z = cs ,

⌅d

V

↵

↵⌅d
log Z = cd , (3)

where V is the volume and cs and cd are, respectively,
the salt concentration and density of water molecules.

The electrostatic potential �(r) is given by

�(r) = � 1
�

⇥ log Z[⇧(r)]
⇥⇧(r)

= i⌥⌃(r)� , (4)

where the bracket ⌥...� denotes the thermal average with
the Boltzmann weight given in Eq. (1).

The Gibbs free energy G is a function of �(r) and is
defined as the Legendre transform of F [⇧(r)] with respect
to ⇧(r) through the equations

G[�(r)] = F [⇧(r)]�
⌃

d3r �(r)⇧(r) ,

�(r) =
⇥F [⇧(r)]

⇥⇧(r)
, (5)

from which we deduce the Legendre relation

⇧(r) = �⇥G[�(r)]
⇥�(r)

, (6)

The dielectric tensor ⌥�⇥ is defined through the Fourier
transform:

⌥�⇥ =
↵2

↵p�↵p⇥

⌃
d3r eip·r ⇥2G[�(r)]

⇥�(r)⇥�(0)

�����
�=0,p=0

. (7)

In our present study, the dielectric tensor for isotropic
aqueous solutions is diagonal ⌥�⇥ = ⌥⇥�⇥ , and our aim is
to calculate its variation as a function of the salt concen-
tration cs. Following Eq. (7), we need only to calculate
the coe⌅cient of the |⌦�(r)|2 terms in the Gibbs free-
energy G[�(r)].

On the mean-field level the Gibbs free-energy for the
Dipolar PB system, GDPB, is

�GDPB[�] = ��⌥0

2
(⌦�)2 � 2cs cosh(�e�)

� cdg(u), (8)

with u = �p0⌦�(r), u = |u|, and g(u) = sinhu/u. The
Dipolar Poisson-Boltzmann (DPB) equation is an exten-
sion of the standard PB equation, and can be derived via
a variational principle from Eq. (8):

⇤0⌦2� = 2cse sinh (�e�)

� cdp0⌦ ·
⌅
⌦�
|⌦�|G(�p0|⌦�|)

⇧
, (9)

where the function G = g⇤(u) = coshu/u � sinh u/u2 is
related to the Langevin function L(u) = coth(u)� 1/u.

The dielectric constant ⌥DPB is calculated by substi-
tuting GDPB into Eq. (7). The result is the same as in
Ref. [23]:

⌥DPB = ⌥0 + �p2
0cd/3 . (10)

As can be seen above, the dielectric response depends
on the dipole (but not the ion) density cd and, hence,
cannot explain the dielectric decrement. At room tem-
perature, T = 300 K, and for pure water with dipolar
moment p0 = 1.8 D and density cd = 55M, the obtained
value of ⌥ is ⌥DPB ⌅ 11.1⌥0. Note that this value is much
smaller than the measured water value ⌥w ⌅ 80⌥0. This
is not surprising [23] since Eq. (10) is a dilute gas ap-
proximation and does not capture the correlation e⇥ects
in the case of dense liquid water as well as the finite-size
of water molecules.

It is still possible, however, to circumvent this draw-
back by solving the DPB equation, Eq. (9), around a
fixed point-like ion, and showing the existence of a hy-
dration shell around it. Expanding G in a Taylor series,
the dielectric constant is extracted as a function of the
distance r from the ion:

⇤(r) ⌅ ⇤DPB

3h2 (lh/r) + 1
, (11)
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where V is the volume and cs and cd are, respectively,
the salt concentration and density of water molecules.

The electrostatic potential �(r) is given by

�(r) = � 1
�

⇥ log Z[⇧(r)]
⇥⇧(r)

= i⌥⌃(r)� , (4)

where the bracket ⌥...� denotes the thermal average with
the Boltzmann weight given in Eq. (1).

The Gibbs free energy G is a function of �(r) and is
defined as the Legendre transform of F [⇧(r)] with respect
to ⇧(r) through the equations

G[�(r)] = F [⇧(r)]�
⌃

d3r �(r)⇧(r) ,
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, (5)

from which we deduce the Legendre relation
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, (6)

The dielectric tensor ⌥�⇥ is defined through the Fourier
transform:
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In our present study, the dielectric tensor for isotropic
aqueous solutions is diagonal ⌥�⇥ = ⌥⇥�⇥ , and our aim is
to calculate its variation as a function of the salt concen-
tration cs. Following Eq. (7), we need only to calculate
the coe⌅cient of the |⌦�(r)|2 terms in the Gibbs free-
energy G[�(r)].

On the mean-field level the Gibbs free-energy for the
Dipolar PB system, GDPB, is

�GDPB[�] = ��⌥0

2
(⌦�)2 � 2cs cosh(�e�)

� cdg(u), (8)

with u = �p0⌦�(r), u = |u|, and g(u) = sinhu/u. The
Dipolar Poisson-Boltzmann (DPB) equation is an exten-
sion of the standard PB equation, and can be derived via
a variational principle from Eq. (8):

⇤0⌦2� = 2cse sinh (�e�)
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⌅
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where the function G = g⇤(u) = coshu/u � sinh u/u2 is
related to the Langevin function L(u) = coth(u)� 1/u.

The dielectric constant ⌥DPB is calculated by substi-
tuting GDPB into Eq. (7). The result is the same as in
Ref. [23]:

⌥DPB = ⌥0 + �p2
0cd/3 . (10)

As can be seen above, the dielectric response depends
on the dipole (but not the ion) density cd and, hence,
cannot explain the dielectric decrement. At room tem-
perature, T = 300 K, and for pure water with dipolar
moment p0 = 1.8 D and density cd = 55M, the obtained
value of ⌥ is ⌥DPB ⌅ 11.1⌥0. Note that this value is much
smaller than the measured water value ⌥w ⌅ 80⌥0. This
is not surprising [23] since Eq. (10) is a dilute gas ap-
proximation and does not capture the correlation e⇥ects
in the case of dense liquid water as well as the finite-size
of water molecules.

It is still possible, however, to circumvent this draw-
back by solving the DPB equation, Eq. (9), around a
fixed point-like ion, and showing the existence of a hy-
dration shell around it. Expanding G in a Taylor series,
the dielectric constant is extracted as a function of the
distance r from the ion:

⇤(r) ⌅ ⇤DPB

3h2 (lh/r) + 1
, (11)
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Although our formulation is very general, in this Let-

ter we focus on the dielectric constant variation for ionic
solutions. The solvent (water) is modeled as a liquid of
point-like permanent dipoles of dipolar moment p0 and
the symmetric 1:1 monovalent salt as a liquid of point-like
charges, ±e. Using the standard Hubbard-Stratonovich
transformation [22], the grand-canonical partition func-
tion Z and free energy F = ���1 log Z[⇧(r)] in presence
of an external charge distribution ⇧(r) can be written
as a functional integral over the real field ⌃(r) that is
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Z[⇧(r)] =
⌃

D⌃(r) exp
⇥
��

⌃
d3r f(⌃(r))

� i�

⌃
d3r⌃(r)⇧(r)

⇤
(1)

with

�f(⌃(r)) =
�⌥0

2
[⌦⌃(r)]2 � 2⌅s cos[�e⌃(r)]

�⌅d
sin(�p0|⌦⌃(r)|)

�p0|⌦⌃(r)| , (2)

where � = 1/kBT , and kBT is the thermal energy. The
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where V is the volume and cs and cd are, respectively,
the salt concentration and density of water molecules.

The electrostatic potential �(r) is given by
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where the bracket ⌥...� denotes the thermal average with
the Boltzmann weight given in Eq. (1).

The Gibbs free energy G is a function of �(r) and is
defined as the Legendre transform of F [⇧(r)] with respect
to ⇧(r) through the equations
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from which we deduce the Legendre relation
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In our present study, the dielectric tensor for isotropic
aqueous solutions is diagonal ⌥�⇥ = ⌥⇥�⇥ , and our aim is
to calculate its variation as a function of the salt concen-
tration cs. Following Eq. (7), we need only to calculate
the coe⌅cient of the |⌦�(r)|2 terms in the Gibbs free-
energy G[�(r)].

On the mean-field level the Gibbs free-energy for the
Dipolar PB system, GDPB, is

�GDPB[�] = ��⌥0

2
(⌦�)2 � 2cs cosh(�e�)

� cdg(u), (8)

with u = �p0⌦�(r), u = |u|, and g(u) = sinhu/u. The
Dipolar Poisson-Boltzmann (DPB) equation is an exten-
sion of the standard PB equation, and can be derived via
a variational principle from Eq. (8):
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where the function G = g⇤(u) = coshu/u � sinh u/u2 is
related to the Langevin function L(u) = coth(u)� 1/u.

The dielectric constant ⌥DPB is calculated by substi-
tuting GDPB into Eq. (7). The result is the same as in
Ref. [23]:

⌥DPB = ⌥0 + �p2
0cd/3 . (10)

As can be seen above, the dielectric response depends
on the dipole (but not the ion) density cd and, hence,
cannot explain the dielectric decrement. At room tem-
perature, T = 300 K, and for pure water with dipolar
moment p0 = 1.8 D and density cd = 55M, the obtained
value of ⌥ is ⌥DPB ⌅ 11.1⌥0. Note that this value is much
smaller than the measured water value ⌥w ⌅ 80⌥0. This
is not surprising [23] since Eq. (10) is a dilute gas ap-
proximation and does not capture the correlation e⇥ects
in the case of dense liquid water as well as the finite-size
of water molecules.

It is still possible, however, to circumvent this draw-
back by solving the DPB equation, Eq. (9), around a
fixed point-like ion, and showing the existence of a hy-
dration shell around it. Expanding G in a Taylor series,
the dielectric constant is extracted as a function of the
distance r from the ion:

⇤(r) ⌅ ⇤DPB

3h2 (lh/r) + 1
, (11)
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Although our formulation is very general, in this Let-

ter we focus on the dielectric constant variation for ionic
solutions. The solvent (water) is modeled as a liquid of
point-like permanent dipoles of dipolar moment p0 and
the symmetric 1:1 monovalent salt as a liquid of point-like
charges, ±e. Using the standard Hubbard-Stratonovich
transformation [22], the grand-canonical partition func-
tion Z and free energy F = ���1 log Z[⇧(r)] in presence
of an external charge distribution ⇧(r) can be written
as a functional integral over the real field ⌃(r) that is
conjugate to ⇧(r)
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where � = 1/kBT , and kBT is the thermal energy. The
activity coe⌅cients of the salt ⌅s and water ⌅d are de-
termined by solving the implicit equations
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where V is the volume and cs and cd are, respectively,
the salt concentration and density of water molecules.

The electrostatic potential �(r) is given by

�(r) = � 1
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⇥ log Z[⇧(r)]
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= i⌥⌃(r)� , (4)

where the bracket ⌥...� denotes the thermal average with
the Boltzmann weight given in Eq. (1).

The Gibbs free energy G is a function of �(r) and is
defined as the Legendre transform of F [⇧(r)] with respect
to ⇧(r) through the equations

G[�(r)] = F [⇧(r)]�
⌃

d3r �(r)⇧(r) ,
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from which we deduce the Legendre relation
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, (6)

The dielectric tensor ⌥�⇥ is defined through the Fourier
transform:
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In our present study, the dielectric tensor for isotropic
aqueous solutions is diagonal ⌥�⇥ = ⌥⇥�⇥ , and our aim is
to calculate its variation as a function of the salt concen-
tration cs. Following Eq. (7), we need only to calculate
the coe⌅cient of the |⌦�(r)|2 terms in the Gibbs free-
energy G[�(r)].

On the mean-field level the Gibbs free-energy for the
Dipolar PB system, GDPB, is

�GDPB[�] = ��⌥0

2
(⌦�)2 � 2cs cosh(�e�)

� cdg(u), (8)

with u = �p0⌦�(r), u = |u|, and g(u) = sinhu/u. The
Dipolar Poisson-Boltzmann (DPB) equation is an exten-
sion of the standard PB equation, and can be derived via
a variational principle from Eq. (8):
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⌅
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where the function G = g⇤(u) = coshu/u � sinh u/u2 is
related to the Langevin function L(u) = coth(u)� 1/u.

The dielectric constant ⌥DPB is calculated by substi-
tuting GDPB into Eq. (7). The result is the same as in
Ref. [23]:

⌥DPB = ⌥0 + �p2
0cd/3 . (10)

As can be seen above, the dielectric response depends
on the dipole (but not the ion) density cd and, hence,
cannot explain the dielectric decrement. At room tem-
perature, T = 300 K, and for pure water with dipolar
moment p0 = 1.8 D and density cd = 55M, the obtained
value of ⌥ is ⌥DPB ⌅ 11.1⌥0. Note that this value is much
smaller than the measured water value ⌥w ⌅ 80⌥0. This
is not surprising [23] since Eq. (10) is a dilute gas ap-
proximation and does not capture the correlation e⇥ects
in the case of dense liquid water as well as the finite-size
of water molecules.

It is still possible, however, to circumvent this draw-
back by solving the DPB equation, Eq. (9), around a
fixed point-like ion, and showing the existence of a hy-
dration shell around it. Expanding G in a Taylor series,
the dielectric constant is extracted as a function of the
distance r from the ion:

⇤(r) ⌅ ⇤DPB

3h2 (lh/r) + 1
, (11)
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linear decrement regime.
Although our formulation is very general, in this Let-

ter we focus on the dielectric constant variation for ionic
solutions. The solvent (water) is modeled as a liquid of
point-like permanent dipoles of dipolar moment p0 and
the symmetric 1:1 monovalent salt as a liquid of point-like
charges, ±e. Using the standard Hubbard-Stratonovich
transformation [22], the grand-canonical partition func-
tion Z and free energy F = ���1 log Z[⇧(r)] in presence
of an external charge distribution ⇧(r) can be written
as a functional integral over the real field ⌃(r) that is
conjugate to ⇧(r)
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where � = 1/kBT , and kBT is the thermal energy. The
activity coe⌅cients of the salt ⌅s and water ⌅d are de-
termined by solving the implicit equations
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where V is the volume and cs and cd are, respectively,
the salt concentration and density of water molecules.

The electrostatic potential �(r) is given by

�(r) = � 1
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⇥ log Z[⇧(r)]
⇥⇧(r)

= i⌥⌃(r)� , (4)

where the bracket ⌥...� denotes the thermal average with
the Boltzmann weight given in Eq. (1).

The Gibbs free energy G is a function of �(r) and is
defined as the Legendre transform of F [⇧(r)] with respect
to ⇧(r) through the equations

G[�(r)] = F [⇧(r)]�
⌃

d3r �(r)⇧(r) ,
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from which we deduce the Legendre relation
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, (6)

The dielectric tensor ⌥�⇥ is defined through the Fourier
transform:
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In our present study, the dielectric tensor for isotropic
aqueous solutions is diagonal ⌥�⇥ = ⌥⇥�⇥ , and our aim is
to calculate its variation as a function of the salt concen-
tration cs. Following Eq. (7), we need only to calculate
the coe⌅cient of the |⌦�(r)|2 terms in the Gibbs free-
energy G[�(r)].

On the mean-field level the Gibbs free-energy for the
Dipolar PB system, GDPB, is

�GDPB[�] = ��⌥0

2
(⌦�)2 � 2cs cosh(�e�)

� cdg(u), (8)

with u = �p0⌦�(r), u = |u|, and g(u) = sinhu/u. The
Dipolar Poisson-Boltzmann (DPB) equation is an exten-
sion of the standard PB equation, and can be derived via
a variational principle from Eq. (8):

⇤0⌦2� = 2cse sinh (�e�)

� cdp0⌦ ·
⌅
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where the function G = g⇤(u) = coshu/u � sinh u/u2 is
related to the Langevin function L(u) = coth(u)� 1/u.

The dielectric constant ⌥DPB is calculated by substi-
tuting GDPB into Eq. (7). The result is the same as in
Ref. [23]:

⌥DPB = ⌥0 + �p2
0cd/3 . (10)

As can be seen above, the dielectric response depends
on the dipole (but not the ion) density cd and, hence,
cannot explain the dielectric decrement. At room tem-
perature, T = 300 K, and for pure water with dipolar
moment p0 = 1.8 D and density cd = 55M, the obtained
value of ⌥ is ⌥DPB ⌅ 11.1⌥0. Note that this value is much
smaller than the measured water value ⌥w ⌅ 80⌥0. This
is not surprising [23] since Eq. (10) is a dilute gas ap-
proximation and does not capture the correlation e⇥ects
in the case of dense liquid water as well as the finite-size
of water molecules.

It is still possible, however, to circumvent this draw-
back by solving the DPB equation, Eq. (9), around a
fixed point-like ion, and showing the existence of a hy-
dration shell around it. Expanding G in a Taylor series,
the dielectric constant is extracted as a function of the
distance r from the ion:

⇤(r) ⌅ ⇤DPB

3h2 (lh/r) + 1
, (11)

No ion interaction effect
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linear decrement regime.
Although our formulation is very general, in this Let-

ter we focus on the dielectric constant variation for ionic
solutions. The solvent (water) is modeled as a liquid of
point-like permanent dipoles of dipolar moment p0 and
the symmetric 1:1 monovalent salt as a liquid of point-like
charges, ±e. Using the standard Hubbard-Stratonovich
transformation [22], the grand-canonical partition func-
tion Z and free energy F = ���1 log Z[⇧(r)] in presence
of an external charge distribution ⇧(r) can be written
as a functional integral over the real field ⌃(r) that is
conjugate to ⇧(r)
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where � = 1/kBT , and kBT is the thermal energy. The
activity coe⌅cients of the salt ⌅s and water ⌅d are de-
termined by solving the implicit equations

⌅s

V

↵

↵⌅s
log Z = cs ,
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where V is the volume and cs and cd are, respectively,
the salt concentration and density of water molecules.

The electrostatic potential �(r) is given by

�(r) = � 1
�

⇥ log Z[⇧(r)]
⇥⇧(r)

= i⌥⌃(r)� , (4)

where the bracket ⌥...� denotes the thermal average with
the Boltzmann weight given in Eq. (1).

The Gibbs free energy G is a function of �(r) and is
defined as the Legendre transform of F [⇧(r)] with respect
to ⇧(r) through the equations

G[�(r)] = F [⇧(r)]�
⌃
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from which we deduce the Legendre relation
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, (6)

The dielectric tensor ⌥�⇥ is defined through the Fourier
transform:
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In our present study, the dielectric tensor for isotropic
aqueous solutions is diagonal ⌥�⇥ = ⌥⇥�⇥ , and our aim is
to calculate its variation as a function of the salt concen-
tration cs. Following Eq. (7), we need only to calculate
the coe⌅cient of the |⌦�(r)|2 terms in the Gibbs free-
energy G[�(r)].

On the mean-field level the Gibbs free-energy for the
Dipolar PB system, GDPB, is

�GDPB[�] = ��⌥0

2
(⌦�)2 � 2cs cosh(�e�)

� cdg(u), (8)

with u = �p0⌦�(r), u = |u|, and g(u) = sinhu/u. The
Dipolar Poisson-Boltzmann (DPB) equation is an exten-
sion of the standard PB equation, and can be derived via
a variational principle from Eq. (8):

⇤0⌦2� = 2cse sinh (�e�)

� cdp0⌦ ·
⌅
⌦�
|⌦�|G(�p0|⌦�|)

⇧
, (9)

where the function G = g⇤(u) = coshu/u � sinh u/u2 is
related to the Langevin function L(u) = coth(u)� 1/u.

The dielectric constant ⌥DPB is calculated by substi-
tuting GDPB into Eq. (7). The result is the same as in
Ref. [23]:

⌥DPB = ⌥0 + �p2
0cd/3 . (10)

As can be seen above, the dielectric response depends
on the dipole (but not the ion) density cd and, hence,
cannot explain the dielectric decrement. At room tem-
perature, T = 300 K, and for pure water with dipolar
moment p0 = 1.8 D and density cd = 55M, the obtained
value of ⌥ is ⌥DPB ⌅ 11.1⌥0. Note that this value is much
smaller than the measured water value ⌥w ⌅ 80⌥0. This
is not surprising [23] since Eq. (10) is a dilute gas ap-
proximation and does not capture the correlation e⇥ects
in the case of dense liquid water as well as the finite-size
of water molecules.

It is still possible, however, to circumvent this draw-
back by solving the DPB equation, Eq. (9), around a
fixed point-like ion, and showing the existence of a hy-
dration shell around it. Expanding G in a Taylor series,
the dielectric constant is extracted as a function of the
distance r from the ion:

⇤(r) ⌅ ⇤DPB

3h2 (lh/r) + 1
, (11)
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Although our formulation is very general, in this Let-

ter we focus on the dielectric constant variation for ionic
solutions. The solvent (water) is modeled as a liquid of
point-like permanent dipoles of dipolar moment p0 and
the symmetric 1:1 monovalent salt as a liquid of point-like
charges, ±e. Using the standard Hubbard-Stratonovich
transformation [22], the grand-canonical partition func-
tion Z and free energy F = ���1 log Z[⇧(r)] in presence
of an external charge distribution ⇧(r) can be written
as a functional integral over the real field ⌃(r) that is
conjugate to ⇧(r)
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where � = 1/kBT , and kBT is the thermal energy. The
activity coe⌅cients of the salt ⌅s and water ⌅d are de-
termined by solving the implicit equations
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where V is the volume and cs and cd are, respectively,
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where the bracket ⌥...� denotes the thermal average with
the Boltzmann weight given in Eq. (1).

The Gibbs free energy G is a function of �(r) and is
defined as the Legendre transform of F [⇧(r)] with respect
to ⇧(r) through the equations
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In our present study, the dielectric tensor for isotropic
aqueous solutions is diagonal ⌥�⇥ = ⌥⇥�⇥ , and our aim is
to calculate its variation as a function of the salt concen-
tration cs. Following Eq. (7), we need only to calculate
the coe⌅cient of the |⌦�(r)|2 terms in the Gibbs free-
energy G[�(r)].

On the mean-field level the Gibbs free-energy for the
Dipolar PB system, GDPB, is

�GDPB[�] = ��⌥0

2
(⌦�)2 � 2cs cosh(�e�)

� cdg(u), (8)

with u = �p0⌦�(r), u = |u|, and g(u) = sinhu/u. The
Dipolar Poisson-Boltzmann (DPB) equation is an exten-
sion of the standard PB equation, and can be derived via
a variational principle from Eq. (8):

⇤0⌦2� = 2cse sinh (�e�)
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where the function G = g⇤(u) = coshu/u � sinh u/u2 is
related to the Langevin function L(u) = coth(u)� 1/u.

The dielectric constant ⌥DPB is calculated by substi-
tuting GDPB into Eq. (7). The result is the same as in
Ref. [23]:

⌥DPB = ⌥0 + �p2
0cd/3 . (10)

As can be seen above, the dielectric response depends
on the dipole (but not the ion) density cd and, hence,
cannot explain the dielectric decrement. At room tem-
perature, T = 300 K, and for pure water with dipolar
moment p0 = 1.8 D and density cd = 55M, the obtained
value of ⌥ is ⌥DPB ⌅ 11.1⌥0. Note that this value is much
smaller than the measured water value ⌥w ⌅ 80⌥0. This
is not surprising [23] since Eq. (10) is a dilute gas ap-
proximation and does not capture the correlation e⇥ects
in the case of dense liquid water as well as the finite-size
of water molecules.

It is still possible, however, to circumvent this draw-
back by solving the DPB equation, Eq. (9), around a
fixed point-like ion, and showing the existence of a hy-
dration shell around it. Expanding G in a Taylor series,
the dielectric constant is extracted as a function of the
distance r from the ion:

⇤(r) ⌅ ⇤DPB

3h2 (lh/r) + 1
, (11)
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In our present study, the dielectric tensor for isotropic
aqueous solutions is diagonal ⌥�⇥ = ⌥⇥�⇥ , and our aim is
to calculate its variation as a function of the salt concen-
tration cs. Following Eq. (7), we need only to calculate
the coe⌅cient of the |⌦�(r)|2 terms in the Gibbs free-
energy G[�(r)].

On the mean-field level the Gibbs free-energy for the
Dipolar PB system, GDPB, is
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with u = �p0⌦�(r), u = |u|, and g(u) = sinhu/u. The
Dipolar Poisson-Boltzmann (DPB) equation is an exten-
sion of the standard PB equation, and can be derived via
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related to the Langevin function L(u) = coth(u)� 1/u.

The dielectric constant ⌥DPB is calculated by substi-
tuting GDPB into Eq. (7). The result is the same as in
Ref. [23]:

⌥DPB = ⌥0 + �p2
0cd/3 . (10)

As can be seen above, the dielectric response depends
on the dipole (but not the ion) density cd and, hence,
cannot explain the dielectric decrement. At room tem-
perature, T = 300 K, and for pure water with dipolar
moment p0 = 1.8 D and density cd = 55M, the obtained
value of ⌥ is ⌥DPB ⌅ 11.1⌥0. Note that this value is much
smaller than the measured water value ⌥w ⌅ 80⌥0. This
is not surprising [23] since Eq. (10) is a dilute gas ap-
proximation and does not capture the correlation e⇥ects
in the case of dense liquid water as well as the finite-size
of water molecules.

It is still possible, however, to circumvent this draw-
back by solving the DPB equation, Eq. (9), around a
fixed point-like ion, and showing the existence of a hy-
dration shell around it. Expanding G in a Taylor series,
the dielectric constant is extracted as a function of the
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The Gibbs free energy G is a function of �(r) and is
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In our present study, the dielectric tensor for isotropic
aqueous solutions is diagonal ⌥�⇥ = ⌥⇥�⇥ , and our aim is
to calculate its variation as a function of the salt concen-
tration cs. Following Eq. (7), we need only to calculate
the coe⌅cient of the |⌦�(r)|2 terms in the Gibbs free-
energy G[�(r)].

On the mean-field level the Gibbs free-energy for the
Dipolar PB system, GDPB, is
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2
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� cdg(u), (8)

with u = �p0⌦�(r), u = |u|, and g(u) = sinhu/u. The
Dipolar Poisson-Boltzmann (DPB) equation is an exten-
sion of the standard PB equation, and can be derived via
a variational principle from Eq. (8):
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where the function G = g⇤(u) = coshu/u � sinh u/u2 is
related to the Langevin function L(u) = coth(u)� 1/u.

The dielectric constant ⌥DPB is calculated by substi-
tuting GDPB into Eq. (7). The result is the same as in
Ref. [23]:

⌥DPB = ⌥0 + �p2
0cd/3 . (10)

As can be seen above, the dielectric response depends
on the dipole (but not the ion) density cd and, hence,
cannot explain the dielectric decrement. At room tem-
perature, T = 300 K, and for pure water with dipolar
moment p0 = 1.8 D and density cd = 55M, the obtained
value of ⌥ is ⌥DPB ⌅ 11.1⌥0. Note that this value is much
smaller than the measured water value ⌥w ⌅ 80⌥0. This
is not surprising [23] since Eq. (10) is a dilute gas ap-
proximation and does not capture the correlation e⇥ects
in the case of dense liquid water as well as the finite-size
of water molecules.

It is still possible, however, to circumvent this draw-
back by solving the DPB equation, Eq. (9), around a
fixed point-like ion, and showing the existence of a hy-
dration shell around it. Expanding G in a Taylor series,
the dielectric constant is extracted as a function of the
distance r from the ion:

⇤(r) ⌅ ⇤DPB

3h2 (lh/r) + 1
, (11)
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point-like permanent dipoles of dipolar moment p0 and
the symmetric 1:1 monovalent salt as a liquid of point-like
charges, ±e. Using the standard Hubbard-Stratonovich
transformation [22], the grand-canonical partition func-
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as a functional integral over the real field ⌃(r) that is
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In our present study, the dielectric tensor for isotropic
aqueous solutions is diagonal ⌥�⇥ = ⌥⇥�⇥ , and our aim is
to calculate its variation as a function of the salt concen-
tration cs. Following Eq. (7), we need only to calculate
the coe⌅cient of the |⌦�(r)|2 terms in the Gibbs free-
energy G[�(r)].

On the mean-field level the Gibbs free-energy for the
Dipolar PB system, GDPB, is
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2
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with u = �p0⌦�(r), u = |u|, and g(u) = sinhu/u. The
Dipolar Poisson-Boltzmann (DPB) equation is an exten-
sion of the standard PB equation, and can be derived via
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where the function G = g⇤(u) = coshu/u � sinh u/u2 is
related to the Langevin function L(u) = coth(u)� 1/u.

The dielectric constant ⌥DPB is calculated by substi-
tuting GDPB into Eq. (7). The result is the same as in
Ref. [23]:

⌥DPB = ⌥0 + �p2
0cd/3 . (10)

As can be seen above, the dielectric response depends
on the dipole (but not the ion) density cd and, hence,
cannot explain the dielectric decrement. At room tem-
perature, T = 300 K, and for pure water with dipolar
moment p0 = 1.8 D and density cd = 55M, the obtained
value of ⌥ is ⌥DPB ⌅ 11.1⌥0. Note that this value is much
smaller than the measured water value ⌥w ⌅ 80⌥0. This
is not surprising [23] since Eq. (10) is a dilute gas ap-
proximation and does not capture the correlation e⇥ects
in the case of dense liquid water as well as the finite-size
of water molecules.

It is still possible, however, to circumvent this draw-
back by solving the DPB equation, Eq. (9), around a
fixed point-like ion, and showing the existence of a hy-
dration shell around it. Expanding G in a Taylor series,
the dielectric constant is extracted as a function of the
distance r from the ion:
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In our present study, the dielectric tensor for isotropic
aqueous solutions is diagonal ⌥�⇥ = ⌥⇥�⇥ , and our aim is
to calculate its variation as a function of the salt concen-
tration cs. Following Eq. (7), we need only to calculate
the coe⌅cient of the |⌦�(r)|2 terms in the Gibbs free-
energy G[�(r)].

On the mean-field level the Gibbs free-energy for the
Dipolar PB system, GDPB, is
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related to the Langevin function L(u) = coth(u)� 1/u.

The dielectric constant ⌥DPB is calculated by substi-
tuting GDPB into Eq. (7). The result is the same as in
Ref. [23]:

⌥DPB = ⌥0 + �p2
0cd/3 . (10)

As can be seen above, the dielectric response depends
on the dipole (but not the ion) density cd and, hence,
cannot explain the dielectric decrement. At room tem-
perature, T = 300 K, and for pure water with dipolar
moment p0 = 1.8 D and density cd = 55M, the obtained
value of ⌥ is ⌥DPB ⌅ 11.1⌥0. Note that this value is much
smaller than the measured water value ⌥w ⌅ 80⌥0. This
is not surprising [23] since Eq. (10) is a dilute gas ap-
proximation and does not capture the correlation e⇥ects
in the case of dense liquid water as well as the finite-size
of water molecules.

It is still possible, however, to circumvent this draw-
back by solving the DPB equation, Eq. (9), around a
fixed point-like ion, and showing the existence of a hy-
dration shell around it. Expanding G in a Taylor series,
the dielectric constant is extracted as a function of the
distance r from the ion:

⇤(r) ⌅ ⇤DPB

3h2 (lh/r) + 1
, (11)

2

linear decrement regime.
Although our formulation is very general, in this Let-

ter we focus on the dielectric constant variation for ionic
solutions. The solvent (water) is modeled as a liquid of
point-like permanent dipoles of dipolar moment p0 and
the symmetric 1:1 monovalent salt as a liquid of point-like
charges, ±e. Using the standard Hubbard-Stratonovich
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In our present study, the dielectric tensor for isotropic
aqueous solutions is diagonal ⌥�⇥ = ⌥⇥�⇥ , and our aim is
to calculate its variation as a function of the salt concen-
tration cs. Following Eq. (7), we need only to calculate
the coe⌅cient of the |⌦�(r)|2 terms in the Gibbs free-
energy G[�(r)].

On the mean-field level the Gibbs free-energy for the
Dipolar PB system, GDPB, is

�GDPB[�] = ��⌥0

2
(⌦�)2 � 2cs cosh(�e�)

� cdg(u), (8)

with u = �p0⌦�(r), u = |u|, and g(u) = sinhu/u. The
Dipolar Poisson-Boltzmann (DPB) equation is an exten-
sion of the standard PB equation, and can be derived via
a variational principle from Eq. (8):
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where the function G = g⇤(u) = coshu/u � sinh u/u2 is
related to the Langevin function L(u) = coth(u)� 1/u.

The dielectric constant ⌥DPB is calculated by substi-
tuting GDPB into Eq. (7). The result is the same as in
Ref. [23]:

⌥DPB = ⌥0 + �p2
0cd/3 . (10)

As can be seen above, the dielectric response depends
on the dipole (but not the ion) density cd and, hence,
cannot explain the dielectric decrement. At room tem-
perature, T = 300 K, and for pure water with dipolar
moment p0 = 1.8 D and density cd = 55M, the obtained
value of ⌥ is ⌥DPB ⌅ 11.1⌥0. Note that this value is much
smaller than the measured water value ⌥w ⌅ 80⌥0. This
is not surprising [23] since Eq. (10) is a dilute gas ap-
proximation and does not capture the correlation e⇥ects
in the case of dense liquid water as well as the finite-size
of water molecules.

It is still possible, however, to circumvent this draw-
back by solving the DPB equation, Eq. (9), around a
fixed point-like ion, and showing the existence of a hy-
dration shell around it. Expanding G in a Taylor series,
the dielectric constant is extracted as a function of the
distance r from the ion:
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As can be seen above, the dielectric response depends
on the dipole (but not the ion) density cd and, hence,
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value of ⌥ is ⌥DPB ⌅ 11.1⌥0. Note that this value is much
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As can be seen above, the dielectric response depends
on the dipole (but not the ion) density cd and, hence,
cannot explain the dielectric decrement. At room tem-
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The dielectric constant is the coefficient of the square 
gradient term.

No effect of the ions on the dielectric constant at 
mean-field level
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The length, l2h = lBd/
⌥

10 in Eq. (11), depends both
on the dipole size d = p0/q and the Bjerrum length,
lB = e2/4⌥�kBT . It is the only length scale in the prob-
lem characterizing the hydration shell thickness as can
be seen from the behavior of ⌅(r) (inset of Fig. 1). In
the vicinity of the ion (r ⇤ lh), the dielectric response
is very small and it smoothly rises to bulk values as the
influence of the ion decreases, within distances of a few
lh.

By averaging � of Eq. (11) over a sphere of radius R
around each ion, and equating R with the typical dis-
tance between two ions, (2cs)�1/3/2, at concentration
cs, we obtain the expression of ⇧�(cs)⌃. As can be seen in
Fig. 1, the non-linear dielectric decrement is reproduced
and fits rather well the experimental data for RbCl and
CsCl salts of Ref. [19]. For low salt concentration, the
averaging of � can be done analytically and results in a
linear decrement with ⇥ ⌅ 110⌅DPB l3h, which is propor-
tional to the hydration shell volume. Using parameter
values as in Fig. 1, we get ⇥ ⌅ 17�0.
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FIG. 1: (color online). The dielectric constant ⇥�⇤ averaged
inside a specific volume around a single ion (solid line) as func-
tion of ionic concentration, cs. The comparison is done with
experimental values for RbCl (empty circles) and CsCl (full cir-
cles) [19]. In the inset, the exact (solid line) and approximated
(dashed, Eq. (11)) solutions of the DPB equation, Eq. (9) are
shown as function of the distance r from a point charge (ion).
Choosing as a fit parameter the dipole moment of water to be
p0 = 4.8D (instead of the physical value p0 = 1.8D) [23], allows
us to obtain �DPB = 80�0 and lh � 1.5 Å.

So far in order to induce the necessary ion-dipole cor-

relations, we had to rely on calculating the dielectric re-
sponse around a single fixed ion, which gives the dielec-
tric decrement in an approximated way. Moreover, the
validity of the DPB theory can be justified only in the
dilute limit, where the dipole-dipole fluctuations are not
important.

To overcome this limitation a more complete treat-
ment of the statistical mechanics of ionic and dipolar
degrees of freedom (including their interactions) is de-
veloped. We generalize the Debye-Hückel approximation
to dipolar systems in presence of salt, via a loop expan-
sion [24, 25] of the Gibbs free-energy, G = GDPB + ⇥G.
To one-loop order the calculation of ⇥G yields:
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To get a consistent expression for the dielectric con-
stant we need to pay extra attention in the loop expan-
sion to the expressions of the ion and dipole activities,
⌃s and ⌃d. While at mean-field level ⌃s and ⌃d are equal
to the ion and dipole (water) densities, cs and cd, respec-
tively, their corrections are derived by expanding Eq. (3)
to one-loop order. To this order, only the correction to ⌃d

will a⌅ect the mean-field value of the dielectric constant,
�DPB , and is written as
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where a is a microscopic cuto⌅ length and ⇧D =
⌥

8⌥lBcs

is the inverse Debye length. The origin of the cuto⌅ in
our formulation is related to the fact that Coulombic in-
teractions diverge at zero distance, while in reality such
a divergence is avoided because of steric repulsion. An
alternative elegant way of avoiding the divergence is to
use the self-energy regulating technique [26]. However
for the sake of simplicity, we use the cuto⌅ length a,
which is related to the minimal distance between adjacent
dipoles and charges, and thus indirectly also to the size
of dipoles and ions. By introducing a minimal distance,
we also avoid unphysically high dipolar concentrations in
the vicinity of the ions.

We can now calculate consistently the corrections to
the dielectric constant up to one-loop order. The correc-
tion term can be split into water and salt contributions,
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tional to the hydration shell volume. Using parameter
values as in Fig. 1, we get ⇥ ⌅ 17�0.
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FIG. 1: (color online). The dielectric constant ⇥�⇤ averaged
inside a specific volume around a single ion (solid line) as func-
tion of ionic concentration, cs. The comparison is done with
experimental values for RbCl (empty circles) and CsCl (full cir-
cles) [19]. In the inset, the exact (solid line) and approximated
(dashed, Eq. (11)) solutions of the DPB equation, Eq. (9) are
shown as function of the distance r from a point charge (ion).
Choosing as a fit parameter the dipole moment of water to be
p0 = 4.8D (instead of the physical value p0 = 1.8D) [23], allows
us to obtain �DPB = 80�0 and lh � 1.5 Å.

So far in order to induce the necessary ion-dipole cor-

relations, we had to rely on calculating the dielectric re-
sponse around a single fixed ion, which gives the dielec-
tric decrement in an approximated way. Moreover, the
validity of the DPB theory can be justified only in the
dilute limit, where the dipole-dipole fluctuations are not
important.

To overcome this limitation a more complete treat-
ment of the statistical mechanics of ionic and dipolar
degrees of freedom (including their interactions) is de-
veloped. We generalize the Debye-Hückel approximation
to dipolar systems in presence of salt, via a loop expan-
sion [24, 25] of the Gibbs free-energy, G = GDPB + ⇥G.
To one-loop order the calculation of ⇥G yields:
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To get a consistent expression for the dielectric con-
stant we need to pay extra attention in the loop expan-
sion to the expressions of the ion and dipole activities,
⌃s and ⌃d. While at mean-field level ⌃s and ⌃d are equal
to the ion and dipole (water) densities, cs and cd, respec-
tively, their corrections are derived by expanding Eq. (3)
to one-loop order. To this order, only the correction to ⌃d

will a⌅ect the mean-field value of the dielectric constant,
�DPB , and is written as
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where a is a microscopic cuto⌅ length and ⇧D =
⌥

8⌥lBcs

is the inverse Debye length. The origin of the cuto⌅ in
our formulation is related to the fact that Coulombic in-
teractions diverge at zero distance, while in reality such
a divergence is avoided because of steric repulsion. An
alternative elegant way of avoiding the divergence is to
use the self-energy regulating technique [26]. However
for the sake of simplicity, we use the cuto⌅ length a,
which is related to the minimal distance between adjacent
dipoles and charges, and thus indirectly also to the size
of dipoles and ions. By introducing a minimal distance,
we also avoid unphysically high dipolar concentrations in
the vicinity of the ions.

We can now calculate consistently the corrections to
the dielectric constant up to one-loop order. The correc-
tion term can be split into water and salt contributions,

Ions and dipole fugacities must be also computed to 
one-loop order
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The length, l2h = lBd/
⌥

10 in Eq. (11), depends both
on the dipole size d = p0/q and the Bjerrum length,
lB = e2/4⌥�kBT . It is the only length scale in the prob-
lem characterizing the hydration shell thickness as can
be seen from the behavior of ⌅(r) (inset of Fig. 1). In
the vicinity of the ion (r ⇤ lh), the dielectric response
is very small and it smoothly rises to bulk values as the
influence of the ion decreases, within distances of a few
lh.

By averaging � of Eq. (11) over a sphere of radius R
around each ion, and equating R with the typical dis-
tance between two ions, (2cs)�1/3/2, at concentration
cs, we obtain the expression of ⇧�(cs)⌃. As can be seen in
Fig. 1, the non-linear dielectric decrement is reproduced
and fits rather well the experimental data for RbCl and
CsCl salts of Ref. [19]. For low salt concentration, the
averaging of � can be done analytically and results in a
linear decrement with ⇥ ⌅ 110⌅DPB l3h, which is propor-
tional to the hydration shell volume. Using parameter
values as in Fig. 1, we get ⇥ ⌅ 17�0.
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FIG. 1: (color online). The dielectric constant ⇥�⇤ averaged
inside a specific volume around a single ion (solid line) as func-
tion of ionic concentration, cs. The comparison is done with
experimental values for RbCl (empty circles) and CsCl (full cir-
cles) [19]. In the inset, the exact (solid line) and approximated
(dashed, Eq. (11)) solutions of the DPB equation, Eq. (9) are
shown as function of the distance r from a point charge (ion).
Choosing as a fit parameter the dipole moment of water to be
p0 = 4.8D (instead of the physical value p0 = 1.8D) [23], allows
us to obtain �DPB = 80�0 and lh � 1.5 Å.

So far in order to induce the necessary ion-dipole cor-

relations, we had to rely on calculating the dielectric re-
sponse around a single fixed ion, which gives the dielec-
tric decrement in an approximated way. Moreover, the
validity of the DPB theory can be justified only in the
dilute limit, where the dipole-dipole fluctuations are not
important.

To overcome this limitation a more complete treat-
ment of the statistical mechanics of ionic and dipolar
degrees of freedom (including their interactions) is de-
veloped. We generalize the Debye-Hückel approximation
to dipolar systems in presence of salt, via a loop expan-
sion [24, 25] of the Gibbs free-energy, G = GDPB + ⇥G.
To one-loop order the calculation of ⇥G yields:
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To get a consistent expression for the dielectric con-
stant we need to pay extra attention in the loop expan-
sion to the expressions of the ion and dipole activities,
⌃s and ⌃d. While at mean-field level ⌃s and ⌃d are equal
to the ion and dipole (water) densities, cs and cd, respec-
tively, their corrections are derived by expanding Eq. (3)
to one-loop order. To this order, only the correction to ⌃d

will a⌅ect the mean-field value of the dielectric constant,
�DPB , and is written as
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where a is a microscopic cuto⌅ length and ⇧D =
⌥

8⌥lBcs

is the inverse Debye length. The origin of the cuto⌅ in
our formulation is related to the fact that Coulombic in-
teractions diverge at zero distance, while in reality such
a divergence is avoided because of steric repulsion. An
alternative elegant way of avoiding the divergence is to
use the self-energy regulating technique [26]. However
for the sake of simplicity, we use the cuto⌅ length a,
which is related to the minimal distance between adjacent
dipoles and charges, and thus indirectly also to the size
of dipoles and ions. By introducing a minimal distance,
we also avoid unphysically high dipolar concentrations in
the vicinity of the ions.

We can now calculate consistently the corrections to
the dielectric constant up to one-loop order. The correc-
tion term can be split into water and salt contributions,
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The length, l2h = lBd/
⌥

10 in Eq. (11), depends both
on the dipole size d = p0/q and the Bjerrum length,
lB = e2/4⌥�kBT . It is the only length scale in the prob-
lem characterizing the hydration shell thickness as can
be seen from the behavior of ⌅(r) (inset of Fig. 1). In
the vicinity of the ion (r ⇤ lh), the dielectric response
is very small and it smoothly rises to bulk values as the
influence of the ion decreases, within distances of a few
lh.

By averaging � of Eq. (11) over a sphere of radius R
around each ion, and equating R with the typical dis-
tance between two ions, (2cs)�1/3/2, at concentration
cs, we obtain the expression of ⇧�(cs)⌃. As can be seen in
Fig. 1, the non-linear dielectric decrement is reproduced
and fits rather well the experimental data for RbCl and
CsCl salts of Ref. [19]. For low salt concentration, the
averaging of � can be done analytically and results in a
linear decrement with ⇥ ⌅ 110⌅DPB l3h, which is propor-
tional to the hydration shell volume. Using parameter
values as in Fig. 1, we get ⇥ ⌅ 17�0.
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FIG. 1: (color online). The dielectric constant ⇥�⇤ averaged
inside a specific volume around a single ion (solid line) as func-
tion of ionic concentration, cs. The comparison is done with
experimental values for RbCl (empty circles) and CsCl (full cir-
cles) [19]. In the inset, the exact (solid line) and approximated
(dashed, Eq. (11)) solutions of the DPB equation, Eq. (9) are
shown as function of the distance r from a point charge (ion).
Choosing as a fit parameter the dipole moment of water to be
p0 = 4.8D (instead of the physical value p0 = 1.8D) [23], allows
us to obtain �DPB = 80�0 and lh � 1.5 Å.

So far in order to induce the necessary ion-dipole cor-

relations, we had to rely on calculating the dielectric re-
sponse around a single fixed ion, which gives the dielec-
tric decrement in an approximated way. Moreover, the
validity of the DPB theory can be justified only in the
dilute limit, where the dipole-dipole fluctuations are not
important.

To overcome this limitation a more complete treat-
ment of the statistical mechanics of ionic and dipolar
degrees of freedom (including their interactions) is de-
veloped. We generalize the Debye-Hückel approximation
to dipolar systems in presence of salt, via a loop expan-
sion [24, 25] of the Gibbs free-energy, G = GDPB + ⇥G.
To one-loop order the calculation of ⇥G yields:

⇥G[⇤(r)] =
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To get a consistent expression for the dielectric con-
stant we need to pay extra attention in the loop expan-
sion to the expressions of the ion and dipole activities,
⌃s and ⌃d. While at mean-field level ⌃s and ⌃d are equal
to the ion and dipole (water) densities, cs and cd, respec-
tively, their corrections are derived by expanding Eq. (3)
to one-loop order. To this order, only the correction to ⌃d

will a⌅ect the mean-field value of the dielectric constant,
�DPB , and is written as
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where a is a microscopic cuto⌅ length and ⇧D =
⌥

8⌥lBcs

is the inverse Debye length. The origin of the cuto⌅ in
our formulation is related to the fact that Coulombic in-
teractions diverge at zero distance, while in reality such
a divergence is avoided because of steric repulsion. An
alternative elegant way of avoiding the divergence is to
use the self-energy regulating technique [26]. However
for the sake of simplicity, we use the cuto⌅ length a,
which is related to the minimal distance between adjacent
dipoles and charges, and thus indirectly also to the size
of dipoles and ions. By introducing a minimal distance,
we also avoid unphysically high dipolar concentrations in
the vicinity of the ions.

We can now calculate consistently the corrections to
the dielectric constant up to one-loop order. The correc-
tion term can be split into water and salt contributions,

Inverse Debye length



• Regularization of short distance 
divergences through cut-off a. Final one-
loop result
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The term �⌅d represents the fluctuation e⇥ect of the wa-
ter dipoles beyond the mean-field DPB level. It varies as
⌅ 1/(cda3). This pure water fluctuation term essentially
adds a positive numerical prefactor of rather large mag-
nitude to the mean-field value of ⌅DPB , meaning that the
one-loop correction is important even for the pure water
case.

The second term �⌅s has by itself two contributions.
The leading term in the dilute solution limit, ⇥Da ⇧ 1,
depends linearly on the salt concentration, �⌅s = ��cs,
with

� =
(⌅DPB � ⌅0)2

⌅DPB

8lB
cda

. (17)

When the Debye length ⇥�1
D is of the same order of mag-

nitude as a (high salt limit), the last term in �⌅s be-
comes dominant and the dielectric decrement levels o⇥
until eventually it will reverse the trend and may even
cause a dielectric increment as seen in some experiments
in the very high salt limit [19].

We compare our prediction for the dielectric constant
⌅, Eq. (16), to experimental values [19] for seven di⇥erent
ionic solutions in concentration range of 0–6 M. We sepa-
rate the seven salts into three subgroup according to the
size of the alkaline cations as presented in the three parts
of Fig. 2. In each of the figure parts the a parameter is
fitted separately. We treat a as a free parameter and find
its value by the best fit of our prediction, Eq. (16), to ex-
perimental data, while keeping the physical value of the
water dipolar moment, p0 = 1.8 D. The best fit to the
data can be seen in 2(a) and corresponds to the largest
ionic size of Cs+ and Rb+. In (b) the fit for K+ ions is
also quite good, while in 2(c) for the smallest ions, Na+

and Li+, and especially for the larger values of cs ⇤ 4 M,
the deviation is more pronounced.

Note that our formula takes into account only in a
broad sense the finite size of ions (and the distance of
closest approach between them) via the a parameter. It
is beyond the level of the theory to give more specific
ionic predictions. Hence, the obtained value of a ⌃ 2.7 Å
is not very sensitive to the type of salt, but its main con-
tribution comes from the water dipoles themselves whose
diameter [27] is about 2.75 Å. On the other hand, as can
be clearly seen from Fig. 2, important cooperative e⇥ects
of ions and dipoles are accounted for in our non-linear
expression for ⌅(cs). For small cs, the dashed line rep-
resents the best linear fit [28] and works well only when

cs ⇥ 1 M, while the non-linear prediction of Eq. (16) suc-
ceeds in fitting the large concentration range as well.

In conclusion, we are able to reproduce rather well the
linear and non-linear dielectric decrement behavior over a
large range of ionic concentrations, and the obtained val-
ues of ⌅ are in quantitative agreement with the data for
several types of monovalent salts. In addition, we found
a qualitative description of the hydration shell charac-
terized by a single length scale, lh. Note that our model
does not contain any significant ionic-specific e⇥ects. To
improve on the latter, we would need to include the ionic
finite-size and specific non-electrostatic short-range inter-
actions that a⇥ect both bulk properties of ionic solutions
such as dielectric constant and viscosity as well as their
behavior at interfaces and, in particular, their surface
tension.
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Beyond one-loop

• Quadratic fluctuations are OK if coupling 
constant not too strong.

• For large coupling constant, no good theory. 
Perform Monte Carlo or Langevin 
simulations.

• Action is complex! 
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Local Langevin dynamics 
for Electrolytes
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General Langevin Equation

dni(r, t)
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where D(r, r0) is any positive definite operator

One can then prove that detailed balance is satisfied

So one can sample the Boltzmann distribution with 
this equation
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Model A : D(r, r0) = D�(r � r0)
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Problem: VERY non local due to Coulomb interaction



Model B : D(r, r0) = Dv�1
c (r � r0)

Everything becomes local!!!

dni(r, t)

dt
= D

0

@r
 
"(r)

⇣
r log

ni(r, t)

�i

⌘!
� �qi(

X

j

qjnj(r, t) + ⇢f (r))

1

A
+r~⇠i(r, t)

h⇠(↵)i (r, t)⇠(↵
0)

j (r0, t0)i = 2D�ij�↵↵0�(r � r0)�(t� t0)

No Ewald sums
Non locality = Laplacian



Application: like-charge attraction
Two ions of same charge q in a multivalent 3:1 salt

q=3



Conclusion
• It is possible to include ion-size, dipolar 

water, etc…at mean-field level, for any 
geometry

• It is possible to account for fluctuations with 
local Langevin equations

• Apply to more systems, in particular 
biopolymers

• Apply to Molecular Dynamics of 
biopolymers

• Exact dynamics in local formulation


