Solvation of ions and ion-ion interaction in polar liquids

Jörg Rottler The University of British Columbia, Vancouver, Canada

Solvation, non-uniform polarizability, and local field effects in solids, liquids, life, and devices

Quantum Matter Institute, UBC Vancouver April 11-14, 2016

Electrostatics for biomolecules

- dominates many static and dynamical properties
- DNA is highly negatively charged: λ=2e⁻/0.34 nm
 → counterions mediate DNA-DNA interactions
- Proteins: 4 out of 20 amino acids are charged
- Phospholipid membranes can carry surface charge density.
 → electric double layer

 Motion of ions (Na, K, Cl) through membrane channels regulate action potential → biological electricity

Potential of mean force of ion pair (NaCl)

- Classical molecular dynamics at T=300K for a single ion pair solvated in water
- Model ions:

$$V_{ij}(r_{ij}) = V_{ij}^{\text{el}}(r_{ij}) + V_{ij}^{\text{LJ}}(r_{ij})$$
$$= \frac{1}{4\pi\epsilon_0} \frac{q_i q_j}{r_{ij}} + 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}}\right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}}\right)^6 \right]$$

• SPC/E water model (rigid molecule, dipole moment 2.35 D, $\varepsilon = 72 \varepsilon_0$)

 Insert ion pair, compute radial distribution function g(r) Boltzmann invert to obtain PMF

$$V_p(r) = -k_B T \ln(g(r))$$

Potential of mean force from simulations

• Classical molecular dynamics at T=300K for a single ion pair

Shen et al, JCTC (2011)

Observations

- Strong deviations from continuum electrostatics at the nanoscale
- Oscillatory short range potential, interaction even reverses sign (for some ion separations)
- Granularity of the solvent clearly becomes important

How could we think about this?

Solvation free energy ΔG_{solv}

"free energy change due to transferring single ion from vacuum into water" MD calculations for model ions:

$$V_{ij}(r_{ij}) = V_{ij}^{\text{el}}(r_{ij}) + V_{ij}^{\text{LJ}}(r_{ij})$$
$$= \frac{1}{4\pi\epsilon_0} \frac{q_i q_j}{r_{ij}} + 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}}\right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}}\right)^6 \right]$$

Horinek et al, J. Chem. Phys. (2009)

Continuum electrostatics picture

Consider spatially dependent dielectric function $\varepsilon(r)$:

Born solvation free energy for one ion:

$$\Delta G_{Born} = \frac{q^2}{8\pi a} \left[\frac{1}{\varepsilon_{out}} - \frac{1}{\varepsilon_{in}} \right]$$

effective ion radius

Can be generalized to N > 1 ions:

$$\Delta G_{GB} = \left[\frac{1}{\varepsilon_{out}} - \frac{1}{\varepsilon_{in}}\right] \sum_{i,j} \frac{q_i q_j}{4\pi \varepsilon_{out} r_{ij}} + \left[\frac{1}{\varepsilon_{out}} - \frac{1}{\varepsilon_{in}}\right] \sum_i \frac{q_i q_i}{8\pi a_i}$$

(a popular implicit solvent model)

Approximates the Poisson-Boltzmann (mean-field) equation: $-\nabla D(r) = \nabla [\epsilon(r)\nabla \varphi(r)] = -\rho_{macro} - \sum_{ions} q_i n_i e^{-q_i \varphi(r)/k_B T}$

Limitations

- Generalized Born approximation: success strongly dependent on choice of (empirical) Born radii
- Poisson-Boltzmann theory: more accurate than GB, but challenging to solve numerically, difficult to use for dynamics
- Neither model takes into account structure of solvent medium at the nanoscale

Can we do better?

Integral equation theory (IET) of liquids:
 3D – reference interaction site model (RISM) theory
 solve for solvent structure (radial distribution function) using
 stat. mech. and integral equations (Ornstein-Zernike) from which
 PMFs, free energies etc can be calculated

→ Andriy Kovalenko (Tuesday am)

 Nonlocal continuum electrostatics: generalize D(r) = \epsilon(r)E(r) to include correlations (orientation of dipole moment of a water molecule depends on configuration in neighborhood)":

$$\mathbf{D}(\mathbf{r}) = \int \mathrm{d}\mathbf{r}' \boldsymbol{\epsilon}(\mathbf{r}, \mathbf{r}') \mathbf{E}(\mathbf{r}').$$

 \rightarrow Jay Bardhan (Monday pm)

Nonlocal electrostatics (linear response)

Displacement: $D(r) = \int dr' \,\epsilon(r,r') E(r')$

Polarization:

$$P(r) = \int dr' \chi(r,r')D(r')$$

nonlocal susceptibility

Translational invariance (homogeneous isotropic medium): $D(r) = \int dr' \,\epsilon(|r - r'|) E(r')$

$$\widehat{D}(k) = \epsilon(k)\widehat{E}(k)$$
$$\widehat{P}(k) = \chi(k)\widehat{D}(k)$$

length-scale dependent static dielectric function (longitudinal part)

Measuring dielectric response

using fluctuation-dissipation theorems at finite T:

• k=0:
$$\varepsilon = 1 + \frac{1}{3\varepsilon_0 k_B TV} (\langle P^2 \rangle - \langle P \rangle^2)$$

(P total dipole moment)

• k>0:
$$\varepsilon(k) = \frac{1}{k_B T} S(k) = \frac{1}{k_B T} \frac{\langle \rho(k) \rho(-k) \rangle}{\varepsilon_0 V k^2}$$

(S(k) bound charge structure factor)

Nonlocal static dielectric function of liquid water

Measure S(k) from thermal fluctuations of water molecules (no ions) from molecular dynamics simulation

Nonlocal static dielectric function of liquid water

 $\epsilon(k) < 0 \text{ or } S(k) > 1$: overscreening

Must have $\chi(k)=1-1/\varepsilon(k) > 0$, only forbidden region is $0 < \epsilon(k) < 1$

Potential of a point charge

$$V_E(r) = \frac{q}{2\pi^2 \epsilon_o r} \int_0^\infty dk \frac{\sin(kr)}{k} \frac{1}{\epsilon(k)}$$

(ε(k)=1 recovers Coulomb potential)

input $\varepsilon(k)$ from simulations and evaluate:

- low order Landau-Ginzburg expansion
- $\kappa_1 < 0$, $\alpha > 0$ gives a region of $\varepsilon(k) < 1$, selects characteristic scale $q_0 = \sqrt{-\kappa_l/2\alpha}$ for spatial modulation of polarization field

Charge asymmetry

PMF of ion pairs in SPC/E water that differ only by their charge

Charge asymmetry

Screening factor different for ++, --, or +- pairs, cannot be described by nonlocal electrostatic theory

Ion water radial distribution functions

Sign asymmetry of water structure around ion

Issues

- Sign asymmetry not captured Nonlinear effects or dielectric saturation

 → no fluctuation dissipation theorem
 → large electric fields of ions cause nonlinearities in water polarization response
- Distortion of solvent structure by finite size of solute

Fedorov and Kornyshev, Mol Phys (2007)

- Assumption of translational invariance too strong: $\epsilon(r,r') \neq \epsilon(|r-r'|)$
- Multibody effects, interfaces?

Beyond infinite dilution: salt dependence of $\boldsymbol{\epsilon}$

Discussion?