Screening of excitations and small polarons in strongly correlated solids and solid surfaces

Hao Tjeng

Max-Planck-Institute Chemical Physics of Solids Dresden

- Salvatore Altieri, Ronald Hesper, George Sawatzky Univ. Groningen
- Tim Haupricht, Thomas Lorenz *Univ. Cologne*
- Andreas Reisner, Katharina Höfer, Christoph Becker, Roger Chang, Maurits Haverkort, Zhiwei Hu – *MPI Dresden*
- Yen-Fa Liao, Ku-Ding Tsuei, Hong-Ji Lin, Chien-Te Chen NSRRC, Taiwan

Modification of material properties using image charge screening

Reduction of charge excitation energies:

• Coulomb energy:

• Charge transfer energy:
$$\Delta = \Delta_0 - 2E_{ir}$$

• Bandgap:

$$\Delta = \Delta_{o} - 2E_{image}$$
$$E_{g} = E_{go} - 2E_{image}$$

 $U = U_0 - 2E_{image}$

Expectations:

- Stronger (super)exchange interactions: $\sim t^2/U$ or $\sim t^4/\Delta^2(1/U-1/\Delta)$
- Higher T_C and T_N ?!!

Strongly reduced band gap in a correlated insulator in close proximity to a metal *Europhys. Lett.*, 40 (2), pp. 177-182 (1997)

R. HESPER, L. H. TJENG and G. A. SAWATZKY

Solid State Physics Laboratory, Materials Science Centre, University of Groningen Nijenborgh 4, 9747 AG Groningen, The Netherlands

Fig. 3. – Photoemission and inverse photoemission processes for a monolayer of C_{60} on metal (a) and for the surface of bulk C_{60} (b). In both cases, the final state charges and polarizations of the bucky-balls are indicated.

$$E_{g} = E_{g}^{at} - 2E_{p}(C_{60}) - 2E_{p} (metal)$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \vdots$$

$$2.2 eV \quad 5.0 eV \quad 1.2 eV \quad \rightarrow \quad 1.6 eV$$

$$(6 nedrest neighbors)$$

$$E_{g} = E_{g}^{at} - 2E_{p}(C_{60})$$

$$\downarrow \qquad \downarrow \qquad \vdots$$

$$3.3 eV \quad 5.0 eV \rightarrow 1.7 eV$$
(8 nearest neighbors)

$$2 \operatorname{Ep} (\operatorname{metal} = \operatorname{image charge}) = \frac{e^2}{2D} = 1.44 \text{ eV} \quad (D \approx 5 \text{ Å})$$

STM/STS: influence of the tip on the observed bandgap of semiconductors ?!

Electronic Structure of Oxide Thin Films on Metals

MgO(001) thin film on Ag(001) substrate

RAPID COMMUNICATIONS

PHYSICAL REVIEW B

VOLUME 59, NUMBER 4

15 JANUARY 1999-II

Image charge screening: A new approach to enhance magnetic ordering temperatures in ultrathin correlated oxide films

S. Altieri,¹ M. Finazzi,² H. H. Hsieh,³ M. W. Haverkort,⁴ H.-J. Lin,⁵ C. T. Chen,⁵ S. Frabboni,^{1,6} G. C. Gazzadi,¹ A. Rota,⁶ S. Valeri,^{1,6} and L. H. Tjeng⁴

Thickness dependence of magnetic ordering temperature of oxide thin films

NiO on MgO(001)

20 ML: $T_N = 500 \text{ K}$ 10 ML: $T_N = 400 \text{ K}$ 5 ML: $T_N = 250 \text{ K}$

Image charge screening: A new approach to enhance magnetic ordering temperatures in ultrathin correlated oxide films

S. Altieri,¹ M. Finazzi,² H. H. Hsieh,³ M. W. Haverkort,⁴ H.-J. Lin,⁵ C. T. Chen,⁵ S. Frabboni,^{1,6} G. C. Gazzadi,¹ A. Rota,⁶ S. Valeri,^{1,6} and L. H. Tjeng⁴

Thickness dependence of magnetic ordering temperature of oxide thin films

how about NiO on Ag(001)?

$$J = -\frac{2t^4}{\Delta^2} \left(\frac{1}{\Delta} + \frac{1}{U}\right),$$

• Coulomb energy: $U = U_o - 2E_{image}$ • Charge transfer energy: $\Delta = \Delta_o - 2E_{image}$

> NiO on Ag(001) 3 ML: $T_N = 390$ K NiO on MgO(001) 3 ML: $T_N < 40$ K

EuO thin films: thickness dependence of Curie temperature

Si - EuO - Al2O3

Cr/Cu - EuO - Y/Al

Al - EuO - Y/Al

Intrinsic conduction through topological surface states of insulating Bi₂Te₃

the ultimate surface science challenge ?!

control of doping at surface

FS volume: 0.1 x 0.1 BZ = 0.01 e/u.c. = few 10¹² e/cm²

surface impurity concentration must be much less than 1%. minimize doping in bulk

10 μ m thick sample = 10⁴ layers bulk impurity concentration must be much less than 1 ppm

100 nm thin sample = 10² layers bulk impurity concentration must be much less than 100 ppm

topological surface states are protected against (non-magnetic) impurity scattering but surface is not protected against impurity doping (surface band bending)

All in-situ ultra-high vacuum experiments

- preparation by true-MBE (10⁻¹⁰ mbar vacuum)
- *in-situ* structure characterization (RHEED, LEED)
- *in-situ* spectroscopy (XPS, ARPES)
- *in-situ* resistivity (four-point probe)

Katharina Höfer, Christoph Becker, Jesse Swanson, Diana Rata

PhD thesis work

Our thin film system

XPS/ARPES

MBE:2

MBE:1

resistivity

ARPES – surface/bulk

ARPES : 3-fold symmetry

KH#81 (BaF2) 11QL

in-situ electrical resistivity

in-situ electrical resistivity

electrical resistivity : contaminations

KH#96 (BaF2) 10QL

in-situ electrical resistivity: thickness dependence

variation in resistivity by factor 1.6, while varying thickness by factor 5

\Rightarrow Resistivity dominated by surface

very high mobilities

Conclusions

good epitaxial films of Bi₂Te₃

SANG

- ARPES: films are insulating in the bulk, metallic at the surface
- in-situ resistivity: good ohmic contacts
 - metallic behaviour > dominated by surface states
- resistivity and chemical potential extremely sensitive
 - to adsorption of contaminants, especially water

PNAS 2014

Intrinsic conduction through topological surface states of insulating Bi₂Te₃ epitaxial thin films

Katharina Hoefer^{a,1}, Christoph Becker^a, Diana Rata^a, Jesse Swanson^{a,b}, Peter Thalmeier^a, and L. H. Tjeng^a

^aMax Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany; and ^bUniversity of British Columbia, Vancouver, BC, Canada V6T 1Z4

Edited by Zachary Fisk, University of California, Irvine, CA, and approved September 18, 2014 (received for review June 6, 2014)

Protective capping of topological surface states of Bi2Te3

Capping with Tellurium

Bi2Te3 20OL + 10ML Te

trigonal crystal structure

- a= 4.456Å
- c= 5.927Å (≙ 1ML)
- \bullet 1.6% mismatch to Bi_2Te_3
- half metal
- ho_{Te} = 5 m Ω m $(\parallel$ to c axis @ 20°C)
- ρ_{Te} = 1.5 m Ω m (\perp to c axis @ 20°C)
 - e.g. 10ML Te \Rightarrow R $_{\Box}$ (@RT)= 250 k Ω
- Te is top layer of Bi₂Te₃

• MBE growth:

- T_{Te} = 185°C (1 Å/min)
- epitaxial growth on Bi₂Te₃ @ RT
- multi-domain

epitaxial growth -- domains due 1.6% misfit

capping films are closed (no pinholes)

Te capping leaves surface states bands intact + no doping !

Te capping gives only small parallel conductivity

Removing Tellurium capping

Pristine state can be restored, also after air-exposure !

capping of Bi₂Te₃ films with Te

- Capping by Te leaves the topological surface states intact (ARPES)
- No doping (ARPES), minor influence on conductivity (4 point)
- Epitaxy can be achieved (RHEED, LEED), no pinholes (XPS)
- Protective against air
- Capping can be removed, pristine state recovered (ARPES, 4 point)

AIP ADVANCES 5, 097139 (2015)

Protective capping of topological surface states of intrinsically insulating Bi₂Te₃

Katharina Hoefer,^a Christoph Becker, Steffen Wirth, and Liu Hao Tjeng^b Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, Dresden 01187, Germany

(Received 23 June 2015; accepted 1 September 2015; published online 11 September 2015)

LaCoO₃ : a benchmark system Co³⁺: 3d⁶

• non-magnetic insulator at low T

• non-magnetic to paramagnetic transition for T>25K, with max. in magn. susceptibility at 100K

• resistivity drop T = 350K -550K, "metal-insulator transition"

Spin-state transitions ? Low – Intermediate – High spin ?

Puzzle: what is the spin state of Co³⁺??

competition: crystal field - band formation - Hund's exchange Haverkort, Hu, Tjeng - PRL 94, 056401 (2005)

Energy level diagram: CoO₆ cluster incl. covalency

Haverkort, Hu, Tjeng - PRL 94, 056401 (2005)

XAS study on the spin state of Co³⁺ ion in LaCoO₃

Haverkort, Hu, Tjeng - PRL 94, 056401 (2005)

Spin state transition: local lattice relaxation

• frozen lattice: $\Delta E >> k_B T$

otherwise too much Van Vleck and incorrect XAS spectra

• inhomogeneous mixed spin-state system

H2-molecule: photoemission and vibrational levels

are seen which correspond to vibrational levels of the molecule ion.

MnO bulk vs Mn in MgO

propagation of an extra hole in MnO

Haupricht thesis 2010

van Elp et al. PRB 1991

 Fe_3O_4 : an insulator at low temperatures

Park, Tjeng, Allen et al. PRB 1997

Fe₃O₄: an insulator at low temperatures

Fe₃O₄: Polarons and Verwey transition ?

Europhys. Lett., **70** (6), pp. 789–795 (2005) DOI: 10.1209/ep1/i2005-10045-y **High-energy photoemission on** Fe₃O₄: **Small polaron physics and the Verwey transition**

D. Schrupp¹, M. Sing^{1,2}, M. Tsunekawa², H. Fujiwara², S. Kasai²,

A. SEKIYAMA², S. SUGA², T. MURO³, V. A. M. BRABERS⁴ and R. CLAESSEN¹

Polaronic Behavior of Photoelectron Spectra of Fe₃O₄ Revealed by Both Hard X-ray and Extremely Low Energy Photons

Masato KIMURA¹, Hidenori FUJIWARA¹, Akira SEKIYAMA^{1,2}, Junichi YAMAGUCHI¹, Kazumasa KISHIMOTO¹, Hiroshi SUGIYAMA¹, Gen FUNABASHI¹, Shin IMADA³, Satoshi IGUCHI⁴, Yoshinori TOKURA⁴, Atsushi HIGASHIYA^{2,5}, Makina YABASHI^{2,6}, Kenji TAMASAKU², Tetsuya ISHIKAWA², Takahiro ITO^{7*}, Shin-ichi KIMURA⁷, and Shigemasa SUGA^{1,2}

Journal of the Physical Society of Japan Vol. 79, No. 6, June, 2010, 064710

Modification of material properties using image charge screening

Reduction of charge excitation energies:

- Coulomb energy: $U = U_o 2E_{image}$
- Charge transfer energy: $\Delta = \Delta_0 2E_{\text{image}}$
- Bandgap: $E_g = E_{go} - 2E_{image}$

Examples from experiments:

- Monolayer C_{60} on Ag : U and E_{g} reduced by 1 eV
- MgO film on Ag : U and Δ reduced by 2 eV
- NiO on Ag vs on MgO : influence on Neel temperature
- Te film on Bi_2Te_3 : more conducting due to polarization ?

Small polarons: energy lowering

- Spin state transition in LaCoO₃
- Propagation of extra hole in MnO, Fe₃O₄