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ABSTRACT: The thermodynamics of dislocations in thin films of
lamella-forming diblock copolymers and their climb and glide motions
are investigated using single-chain-in-mean-field (SCMF) simulations
and self-consistent field theory (SCFT) in conjunction with the string
method. The glide motion of a defect perpendicular to the stripe pattern
is characterized by large free energy barriers. The barriers not only stem
from altering the domain topology; an additional barrier arises from a
small-amplitude but long-range domain displacement. In contrast, the
climb motion along the stripes does not involve a free energy barrier in
accord with the continuous translational invariance along the stripe.
Thus, the perpendicular distance (“impact parameter”) between a pair
of defects is approximately conserved. Dislocation pairs with opposite
Burgers vectors attract each other and move toward each other
(“collide”) via climb motion. We find that the forces between apposing
defects significantly depend on system size, and the Peach−Koehler force in smectic structures only becomes accurate for
extremely large system sizes. Moreover, we observe in SCMF simulations that the defect annihilation time qualitatively and
nonmonotonously depends on the defects’ perpendicular distance and rationalize this finding by the collective kinetics along the
minimum free energy path (MFEP) and the single-chain dynamics in an inhomogeneous environment.

■ INTRODUCTION
Block copolymer self-assembly provides a useful platform for
the fabrication of various ordered nanostructures.1−4 Varying
molecular architectures including chain topology and number
of blocks or species, one can fabricate a vast diversity of
equilibrium structures for a wide spectrum of potential
applications.5−7 For applications in microelectronics, extremely
small defect densities on the order of 1 defect in 100 cm2 are
required, and chemically or topographical substrate patterns are
employed to guide the structure formation. This directed self-
assembly (DSA) of block copolymers offers a promising
bottom-up patterning technique that is currently regarded as
one of the most appealing next-generation lithography
techniques.3,8,9 On one hand, DSA aims to generate large-
scale, defect-free, geometrically simple and dense struc-
tures.10−13 On the other hand, DSA targets the design of
irregular, device-oriented structures, of which some structural
units resemble the geometry of defects.14−17 For both
application aspects it is critical to understand and control the
thermodynamics and kinetics of defect formation and
annihilation.18,19

One of the most widely studied patterns in DSA are lines and
spaces (L/S) that are formed by the self-assembly of AB block
copolymers in thin films yielding perpendicularly standing
lamellae10 or single-layer lying cylinders.20−22 These L/S
structures in the context of DSA have also been intensively

studied by self-consistent field theory (SCFT).9,18,23,24

Imperfections due to stripe misalignment or disconnections
result in the occurrence of topological defects in the quasi-two-
dimensional patterns similar to what is observed in smectic
liquid crystals.9 One prototypical defect type are dislocations.
These defects not only appear in two-dimensional lamellar
morphologies in thin films without patterned substrate, but
they are also observed in single-layer lying cylinders guided by
topographical trenches25 or free-standing lamellae guided by
periodic chemical patterns with imperfect guiding conditions.26

Thermodynamically, the (meta)stability of a defect is
characterized by its excess free energy, ΔFd, i.e., the free
energy difference with respect to the corresponding defect-free
morphology.18 The free energy of a defect dictates the
probability that a defect is created by thermal fluctuations in
a defect-free morphology. Except for the ultimate vicinity of the

transition to the disordered phase, Δ ∼ ̅F k TB 5 with kB
denoting Boltzmann’s constant and T temperature. The large
values of the invariant degree of polymerization, ̅ ∼ 1045 ,
prevent the spontaneous formation of defects. This finding
implies that experimentally observed defects cannot be
conceived as rare equilibrium fluctuations in a defect-free
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top-down soft, coarse-grained models for copolymers  

minimal coarse-grained model that captures only  
relevant interactions: connectivity, excl. volume,  
                                     repulsion of unlike segments 
•  incorporate essential interactions through a  

 small  number of effective parameters: 
 chain extension, Re, compressibility κN and 
 Flory-Huggins parameter χN        universality 

•  elimination of degrees of freedom        
  soft interactions 

 

conformational  
rearrangements ~ 10-12 - 10-10 s  

diffusion  
~ 10-9 -10-4 s 

bond  
vibrations 
~ 10-15 s 

a “small” number of  atoms is lumped 
into an effective segment (interaction 
center) MC,MD, DPD, LB, SCFT 

Daoulas, Müller, JCP 125, 184904 (2006) 
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10-15s    minimal, soft, coarse-grained model     10-5s           simulation      102s 
1 polymer ≈ 5000 (heavy) atoms ≈ 32 segments         1 segment ≈ 150 atoms  



minimal, soft, coarse-grained models  

effective interactions become weaker for large degree of coarse-graining  
         no (strict) excluded volume, soft, effective segments  can overlap,  
         rather enforce low compressibility on length scale of interest,  
``                                           ´´         -terms generate pairwise interactions 
                                                     particle-based description for MC, BD, DPD,  
                                                     or SCMF simulations  

with 

molecular architecture:  
Gaussian chain 

Müller, Smith, J. Polym. Sci. B 43, 934 (2005); Daoulas, Müller, JCP 125, 184904 (2006); Detcheverry, 
Kang, Daoulas, Müller, Nealey, de Pablo, Macromolecules 41, 4989 (2008); Pike, Detcheverry, Müller,  
de Pablo, JCP 131, 084903 (2009); Detcheverry, Pike, Nealey, Müller, de Pablo, PRL 102, 197801 (2009) 

bead-spring model with soft, pairwise interactions 
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Features Features, Future & Limits

SOMA: New System Sizes

I 0.88Re ⇥ 240.64Re ⇥ 135.36Re ,

I nN ⇡ 5 · 108 & time: 2TR

I 10 nvidia K80 devices

I 20h computation time

FLYJUM 12 / 14

0.88Re×240.64Re×135.36Re        10 nvidia K80 devices  
nN ≈500 · 106  time: 4τ                20h computation time 

top-down soft, coarse-grained models for copolymers  



particle simulation and continuum description 
 system: symmetric AB copolymer 
 degrees of freedom: 

particle coordinates,                 composition field (and density), 
 

 model definition: 
intra- and intermolecular potentials      free-energy functional,   
(here: soft, coarse-grained model, SCMF)       (Ginzburg-Landau-de Gennes or Ohta-Kawasaki) 
single-chain dynamics            time-dependent GL theory 
(here: Rouse dynamics)                (model B according to Hohenberg & Halperin)  
segmental friction,            Onsager coefficient, 

 projection:   

Kawasaki, Sekimoto, Physica 143A , 349 (1987) 

F[m]
kBT ⇤ � ln

�
D[{ri,s}] e

�
H({ri,s})

kBT ⇥[m� (⌥̂A� ⌥̂B)]

 m

 t
= ⌥⇥⌥µ

1

t
⌅

1

L
⇥
1

L

�

L
⇧ L3 ⌅ �⇥t

�F = � ⇥A ⌅
�Reo

2

kBT
⌃
N̄

⇥
A

Reo
2 ⇥

⌃
N̄kBT

⌃±(�) = Km(�)⇧±(�)

= km⇧±(�) + i�⇤⇧±(�)

⌃±(�) = ⌅± � ⇤⌥ · v±(�)
= km⇧±(�)� ⇤(�i�)⇧±(�)

Z ⇠
Z
D[m] e�

F[m]
kBT



speed-up particle simulations by concurrent coupling 
question: why are particle simulations slow?    
 
1) barrier problem (b): 
      system has to overcome a free-energy barrier,  
      Kramer’s theory   
      solutions: WL sampling, conf.T-WL, conf. flooding, 
                      metadynamics, transition-path sampling, forward flux sampling, … 
                                                                    Dellago, Bolhuis, Adv. Polym. Sci 221, 167 (2008) 
2) time-scale problem (a): “intrinsically slow processes” 
      downhill in continuum free energy but small Onsager coefficient (response  
      to TD force) and/or two vastly different time scales (stiff equations) 
      stiff interaction dictates time step, weak interaction drives slow time evolution 
      solutions:   �reversible multiple time step MD (RESPA)  
                                                                    Tuckerman, Berne, Martyna, JCP 97, 1990 (1992) 
                        �SCMF simulation                       Müller, Smith J.Polym.Sci.B 43, 934 (2005)  
                                �HMM        E, Engquist, Li, Ren, Vanden-Eijnden, Comm. Comp. Phys. 2, 367 (2007) 



free-energy functional from restraint simulations 
idea: restrain the composition,                       , of particle model to fluctuate 
         around the order-parameter field,         , of the continuum description 
         (field-theoretic umbrella sampling for order-parameter field,         )  
 
 
 
 
 
 
                     strong coupling between particle model and continuum description 

inspired by Maragliano, Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006) 
Müller, Daoulas, Phys. Rev. Lett. 107, 227801 (2011)   

bead-spring model 

soft, non-bonded 

restrain composition 



continuum models  

tive kinetics of structure formation, i.e., the time-evolution of
m(r, t) is routinely parameterized by an Onsager coefficient, L.
This Onsager coefficient quantifies the order-parameter current,
j(r) that is generated by a gradient of the chemical potential,
µ(r) = dF/dm(r). Formal expressions for L can be derived,
e.g., L⇠ f

A

(r)f
B

(r) to account for incompressibility or L⇠ g(r,r0)

where g denotes the intramolecular correlation function, but com-
puting L is a formidable task. Routinely, drastic approximations,
e.g., ignorance of composition-dependence and non-locality of L,
are employed, resulting in:

j(r) =�L—µ(r) (1)

This current and the time evolution of the order parameter are
connected via the continuity equation, which the conservation of
the species A and B also imparts on m, resulting in a conserved
Cahn-Hilliard dynamics for the order parameter (model B accord-
ing to the classification of dynamic universality classes according
to Hohenberg and Halperin).

∂m

∂ t

=�—j = L4 dF

dm(r)
(2)

In this simple form, L is a constant and can be adsorbed as a
scale factor of time. Different numerical schemes have been de-
vised to integrate this partial differential equation in time. In our
exploratory study we use the simple forward Euler scheme.

2.1 Random-Phase-Approximation (RPA)
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Fig. 2 Comparison of the second-order vertex function obtained from
the random-phase approximation (RPA) with the approximations
employed in the Swift-Hohenberg (SH) model and the Ohta-Kawasaki
(OK) model.{fig:gamma2}

In principle, an accurate free-energy functional, F , can be
numerically obtained by SCFT. If the local A density f

A

(r) only
deviates slightly from its average f , one can systematically ex-
pand the free-energy in terms of the order parameter, Y(r) =

f

A

(r)� f . This Random-Phase-Approximation (RPA) yields for
the free-energy difference with respect to the homogeneous state,

Y(r) = 0,
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+ · · ·

where Y
q

=
R

dr exp(iqr)Y(r) is the Fourier transform of the or-
der parameter. Both continuum models are based on this fourth-
order expansion, Eq. (3). The RPA of Leibler provides explicit
expressions for the wavevector-dependent vertex functions, g

i

.
Both continuum models neglect the wavevector dependence of
the vertex functions g3 and g4. For the symmetric case, one ob-
tains v0 = N

r

g3 = 0 and u0 = N

r

g4 ⇡ 156.56. Within mean-field
approximation, this second-order vertex function is directly re-
lated to the collective structure factor in the disordered phase,

1
S(q) ⇠ g2(q), and takes the explicit form

N

r

g2(q) = F(x, f )�2cN with x =
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The function F(x, f ) describes the influence of the chain confor-
mations on the collective composition fluctuations, and g(x, f ) is
the Debye function that describes the fluctuations of an individual
block. For a symmetric block copolymer, the vertex function ex-
hibits a minimum at x

⇤ ⇡ 3.7852 or L = 2p/q

⇤ ⇡ 1.32Re and adopts
the value

N

r

g2(q
⇤) = t0 ⇡ 2(10.495�cN) (5)

The two continuum models differ in the approximation used for
the second-order vertex function. The Swift-Hohenberg model
approximates g2(q) by a parabola around q

⇤

N

r

g2�SH(q) = t0 + e0

h

(q⇤Re)
2 � (qRe)

2
i2

with e0 =
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74.81
(6) {eqn:g2-SH}{eqn:g2-SH}

The Ohta-Kawasaki model also captures the asymptotic behavior
for small and large wavevectors

N

r

g2�OK(q) =
(qRe)2

3
+7.1�2cN +

144
(qRe)2 (7) {eqn:g2-OK}{eqn:g2-OK}

The three forms of the wavevector-dependent second-order ver-
tex functions are depicted in Fig. 2. The Swift-Hohenberg model
provides an excellent approximation in the ultimate vicinity of
the minimum but yields only a poor representation of the ver-
tex function for large and small wavevectors. The Ohta-Kawasaki
model, in turn, accurate captures the asymptotic behavior of the
vertex function for q ! 0 and q ! •, as well as the value of the
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vertex function for q ! 0 and q ! •, as well as the value of the
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tive kinetics of structure formation, i.e., the time-evolution of
m(r, t) is routinely parameterized by an Onsager coefficient, L.
This Onsager coefficient quantifies the order-parameter current,
j(r) that is generated by a gradient of the chemical potential,
µ(r) = dF/dm(r). Formal expressions for L can be derived,
e.g., L⇠ f

A

(r)f
B

(r) to account for incompressibility or L⇠ g(r,r0)

where g denotes the intramolecular correlation function, but com-
puting L is a formidable task. Routinely, drastic approximations,
e.g., ignorance of composition-dependence and non-locality of L,
are employed, resulting in:

j(r) =�L—µ(r) (1)

This current and the time evolution of the order parameter are
connected via the continuity equation, which the conservation of
the species A and B also imparts on m, resulting in a conserved
Cahn-Hilliard dynamics for the order parameter (model B accord-
ing to the classification of dynamic universality classes according
to Hohenberg and Halperin).

∂m

∂ t

=�—j = L4 dF

dm(r)
(2)

In this simple form, L is a constant and can be adsorbed as a
scale factor of time. Different numerical schemes have been de-
vised to integrate this partial differential equation in time. In our
exploratory study we use the simple forward Euler scheme.

2.1 Random-Phase-Approximation (RPA)
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Fig. 2 Comparison of the second-order vertex function obtained from
the random-phase approximation (RPA) with the approximations
employed in the Swift-Hohenberg (SH) model and the Ohta-Kawasaki
(OK) model.{fig:gamma2}

In principle, an accurate free-energy functional, F , can be
numerically obtained by SCFT. If the local A density f
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(r) only
deviates slightly from its average f , one can systematically ex-
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where Y
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dr exp(iqr)Y(r) is the Fourier transform of the or-
der parameter. Both continuum models are based on this fourth-
order expansion, Eq. (3). The RPA of Leibler provides explicit
expressions for the wavevector-dependent vertex functions, g
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the vertex functions g3 and g4. For the symmetric case, one ob-
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The function F(x, f ) describes the influence of the chain confor-
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The three forms of the wavevector-dependent second-order ver-
tex functions are depicted in Fig. 2. The Swift-Hohenberg model
provides an excellent approximation in the ultimate vicinity of
the minimum but yields only a poor representation of the ver-
tex function for large and small wavevectors. The Ohta-Kawasaki
model, in turn, accurate captures the asymptotic behavior of the
vertex function for q ! 0 and q ! •, as well as the value of the
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model, in turn, accurate captures the asymptotic behavior of the
vertex function for q ! 0 and q ! •, as well as the value of the

1–8 | 3

0 for symmetric copolymers, f=1/2 
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continuum models  
PFC / Swift-Hohenberg model    versus            Ohta-Kawasaki model 

+   no long-range part in 
     free-energy 
 
-  higher-order spatial derivative 
 
-  predicts macrophase separation 

between spatially modulated  
phases (and disordered structures)  
for asymmetric compositions 

-  tight dislocation pairs are unstable  
in relevant parameter range 

-  long-range (Coulomb) contribution 
to free energy [but model B  
dynamics with local Onsager  
coefficient is not long-ranged ] 

+   qualitative agreement with phase 
     diagram 

+   tight dislocation pairs exhibit 
     transition from unstable to meta- 
     stable at intermediate segregation 
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copolymer lithography: 
directed assembly of copolymers into nanostructures 

 
courtesy of Ralph Dammel  



defect free energy for lamellar pattern replication 

Nagpal, Müller, Nealey, de Pablo, ACS Macro Letters 1, 418 (2012)  
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tailor the kinetics of structure formation to  

 (a) avoid defect formation and (b) facilitate defect annihilation 
process-directed self-assembly 
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ordering kinetics: SCMF simulations 

  
 

10000 MCS 

PS-rich regions  
(red) 

PS-PMMA interface  
(green) 

Edwards,  Stokovich, Müller, Solak, de Pablo, Nealey, J. Polym. Sci B 43, 3444  (2005) 



ordering kinetics: SCMF simulations 

  
 



5000 10000 20000=8min 

ordering kinetics: SCMF simulations 
1)  surface pattern directs spinodal self-assembly into a  

checkerboard pattern (bottom registered, top anti-registered) 
2)  interface between registered and anti-registered grain shifts upwards 

and the anti-registered grain become thinner and breaks up (dots) 
         perfect order is established by perpendicular interface movement  
         (instead of lateral defect motion and annihilation) 
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ordering kinetics: SCMF simulations 
1)  surface pattern directs spinodal self-assembly into a  

checkerboard pattern (bottom registered, top anti-registered) 
2)  interface between registered and anti-registered grain shifts upwards 

and the anti-registered grain become thinner and breaks up (dots) 
         perfect order is established by perpendicular interface movement  
         (instead of lateral defect motion and annihilation) 

1000 500 1500 100 

defect removal = wetting of the aligned, registered grain 



SCMF simulation of DSA under non-optimal conditions:  
weak surface interaction                     and period mismatch 
 
 
 
 
 
 
 
 
high incompatibility:                                                     small mismatch  
low incompatibility:                                                       large mismatch      

SCMF (bulk) 

 process-directed self-assembly 



process-directed self-assembly: 
1)  one-step quench: 

2)  two-step quench: 
 

 process-directed self-assembly 



process-directed self-assembly: 
1)  one-step quench: 

2)  two-step quench: 

      observation: two-step quench results  
      in pattern replication although …  

χN=30     1.1τ χN=30     3.3τ χN=30    111τ

χN=20     1.1τ χN=20     3.3τ χN=30     4.4τ

χN=30    55.6τ

 process-directed self-assembly 



process-directed self-assembly: 
1)  one-step quench: 

2)  two-step quench: 

      observation: two-step quench results  
      in pattern replication although …  

χN=30     1.1τ χN=30     3.3τ χN=30    111τ

χN=20     1.1τ χN=20     3.3τ χN=30     4.4τ

χN=30    55.6τ

 process-directed self-assembly 

why does the two-step process that gives rise to a “worse” match between the 
guiding pattern and the equilibrium structure yields defect-free self-assembly? 



 kinetics of structure formation:  
thin-film versus directed self-assembly   

thin-film  
self-assembly 

directed self-assembly 
(DSA) 

spinodal self-assembly: 
fingerprint pattern 
τ=Reo

2/D 

spontaneous growth of 
(most) instable mode 

guiding fields direct  
spinodal structure  
formation 

local defect annihilation  
and grain formation 

defects move in response to strain-field mediated 
interactions, defects collide and annihilate 

late stage: 
grain coarsening 

universal power-law 
behavior of grain 
growth, grain boundary 
motion 

defect-free assembly 
already achieved because 
guiding fields dictate grain 
orientation and registration 



early stages: surface-directed spinodal ordering 

  
 

Müller, Li, Orozco Rey, Welling, J. Phys.: Conf. Ser. 640, 012010 (2015) 

Figure 1. Top-down images of the ordering
on a symmetric L/S guiding pattern at �N =
30. The lateral dimensions are L

y

= L

z

=
10L0 and the guiding pattern consists of
alternating A and B-attractive lines of widths
W/L0 = 1/2 and strength ⇤N = 2. The
di↵erent panels present snapshots at times
t = 1000, 3000, 8000, and 14000 SMC.

Figure 2. Two-dimensional den-
sity profiles for the same system
as in Fig. 1 obtained by averag-
ing along the L/S pattern and over
10 independent simulations. The
panels correspond to times t =
1000, 2000, 3000, 4000, 5000, 6000, 8000,
and 10000 SMC from top to bottom.

⇡ 0.1⌧ . The enrichment of A segments on top of the A-attracting guiding lines gives rise
to a concomitant depletion of A segments further away from the substrate. In the averaged
side views this checkerboard structure is clearly visible. It consists of a perfectly ordered and
registered lamellar grain at the substrate and a top grain that is shifted by half a lamellar
period and contains some defects. The perfectly ordered bottom grain and the misaligned
top grain are separated by a horizontal grain boundary. From the side views we observe that
this horizontal grain boundary gradually moves upwards, i.e., the perfectly ordered bottom
grain growths in thickness whereas the misaligned top grain becomes thinner. This process
can be conceived as the wetting of the perfectly ordered and registered bottom grain on the
chemically guiding pattern. Note that the strength of the chemical guiding pattern is large. The
surface free-energy di↵erence �� in Eq. 5 is much larger than the tension of the internal AB
interface, �

AB

Re0
2
/kBT

p
N̄ ⇡ p

�N/6 and therefore even the liquid of segments will wet the
corresponding lines of the chemical pattern. The grain boundary tension typically adopts much
smaller values [19, 20]. Eventually the misaligned top grain becomes so thin that the shifted
stripes break up into spots [9], and defect-free standing lamellae are established at t = 14000
SMC ⇡ 1.1⌧ .

This initial spontaneous self-assembly is directed by the guiding pattern. During this ideal
pattern replication no long-lived metastable defects are formed, and the entire process illustrates
the first stage of DSA – surface-directed spinodal self-assembly.

3.2. Density multiplication

Instead of merely replicating (and improving) the guiding pattern, sparse guiding patterns have
been successfully used to produce structures with a smaller characteristic dimension than the

6
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χN=30, 1:1 pattern replication, symmetric stripe pattern W/L0=1/2, ΛN=±2 
       rapid, defect-free pattern replication via formation of checkerboard pattern 

t = 1000, 3000, 8000, 14000 SMC  t = 1000, 2000, 3000, 4000, 5000,  
      6000, 8000, 10000 SMC 

top-down view 

τ = Reo
2/D= 8990 SMC (≈ 1 min)  
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registered lamellar grain at the substrate and a top grain that is shifted by half a lamellar
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top grain are separated by a horizontal grain boundary. From the side views we observe that
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       rapid, defect-free pattern replication via formation of checkerboard pattern 
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      6000, 8000, 10000 SMC 

top-down view 

initial stage – homogeneously mixed disordered system – is unstable 
                      and spontaneously microphase separates 
three processes: 
•  chemical guiding pattern induces structure formation 
     (linear growth in time) 
                        
 
     with  h(q) being the Fourier transform of chemical pattern 
•  spontaneous growth of composition fluctuations in initial stage 
     (exponential growth in time)          checkerboard structure 
•  film consists of registered bottom and shifted top grain 

interface (grain boundary) moves to top of film 
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 dislocation climb – no barrier for motion parallel to stripes   

climb�

Tong, Sibener, Macromolecules 46, 8538 (2013)�

attractive force between edge dislocations with opposite Burgers vectors 
Peach-Koehler force ~ -c/L, overdamped motion: velocity ~ νc/L  
        L2(t)=a-Dt with D=2νc 
 

graphoepitaxy of 
lying cylinders 

number of stripes 
 N = 14 



system: dislocation pair, χN=30, non-patterned surface  
particle simulations using Single-Chain-in-Mean-Field algorithm 
 
 
 

 dislocation motion – glide and climb   

Peach, Koehler, Phys. Rev. 80, 436 (1950) 
Pershan, J. Appl. Phys. 45, 1590 (1974) 

Eykholt, Srolovitz, J. Appl. Phys. 65, 4204 (1989) 

Peach-Koehler force 

strain-field mediated attraction  
between edge dislocations with 
opposite Burgers vectors 

x 

y 

x/λ with λ=(K/b)1/2 

y/λ
Pershan potential 



defect motion perpendicular to stripes involves domain breaking (barrier) 
•  very low defect mobility for perpendicular glide motion 
•  perpendicular distance between edge dislocations remains conserved 
•  translation invariance along stripes       no barrier for climb motion 

system: dislocation glide by half a period, χN=30, non-patterned surface  
self-consistent field theory (SCFT) calculations / string method F[W] 

with respect to x = Lx/2. The dislocation pair corresponds to an
extra lamella domain for Lx/4 < x < 3Lx/4. In the initial stage, α
= 0, the dislocation cores are formed by an isolated B droplet
(i.e., B-core dislocation), whereas in the final stage, α = 1/2,
there are two apposing A-core dislocations. The ending
morphology, α = 1/2, of the string is obtained from the initial
one, α = 0, by breaking the upper misconnections of the two
dislocations as shown in Figure 11. Obviously, starting and
ending morphologies have equal free energies in a symmetric
block copolymer, and the interval 0 ≤ α ≤ 1/2 corresponds to
half a glide process.

The inner domain spacing, Lx/4 < x < 3Lx/4, is din = Ly/(Np
+ 1), and the outer periodicity is dout = Ly/Np with Np = 8. We
choose the perpendicular system size Ly = Np(Np + 1) d0/(Np +
1/2), asserting that the inner Np + 1 lamellae are compressed
and the outer Np lamellae are stretched so that their free
energies per chain in the stretched and compressed domains are
approximately equal. This choice results in a cancellation of the
boundary-induced forces (discussed in the section Interaction
of Two Apposing Dislocations).
The MFEP of the glide motion of the apposing dislocations

is presented in Figure 11. Its multiple free energy extrema are
indicated by the numbered arrows. The concomitant
intermediate morphologies along the MFEP are depicted in
panels b1−b3 of Figure 11, where we only show the lateral area
around the right dislocation core marked by the red frame in
the panel of the morphology at α = 0 and the top-left portion of
this area inside the blue box is further enlarged to show the
cross section of the broken A domain.
The first maximum along the MFEP, at α = 0.0625,

corresponds to triggering the rupture of the misconnected A
domain that participates in the Y-shaped junction. Similar to
the MFEP of annihilating a tight dislocation pair, this rupture of
the A domain is a truly three-dimensional process that starts at

one of the two confining, nonpreferential surfaces of the film.
The excess free energy arises from the creation of a wedge-
shaped A domain, where the unfavorably thin domain thickness
at the top of the film frustrates the packing of the
macromolecules and increases the area of the internal AB
interfaces (cf. Figure 11b1). We note that the corresponding
free energy barrier, Δf b ≈ 0.06, is slightly larger than the free
energy barrier, 0.05, encountered in breaking an A domain in
the course of annihilating a tight dislocation pair.18

This finding indicates that the barriers for breaking
connections are influenced by the local geometry and the
concomitant local distortion of the domains giving rise to
stretched or compressed domains and a local increase of the
internal AB interface area. As the breaking of the A domain
progresses from the top of the film toward the substrate, the
free energy is reduced and a new metastable state is formed at α
≈ 0.1094. In this metastable state, only the top half of the A
domain is broken, but the bottom portion of the Y-shaped
connection remains intact. This metastable structure has a lower
free energy than the isolated, quasi-two-dimensional disloca-
tion, α = 0. Indeed, such a partially broken A domain is also
observed as long-lived structure in the simulation of the
stagnation climb for t < 28τ; cf. bottom row of snapshots in
Figure 1.
The portion 0.3594 ≤ α ≤ 0.5 of the MFEP path

corresponds to breaking the bottom half of the A connection,
completing the transformation from B-core dislocation to an A-
core dislocation. By virtue of the compositional symmetry of
the copolymer and geometric symmetry of the intermediate
defect morphologies, the MFEP path is symmetric with respect
to α = 1/4.
The configurations along the MFEP at α = 0.1094, 1/4, and

0.3594 demonstrate that the large free energy barrier, Δf b ≈
0.3, at α = 0.25 is not associated with altering the domain
connectivity. In fact, the local morphologies at α = 0.1094 and
0.25 are very similar. Instead, the barrier at α = 1/4 arises from
a subtle but long-range distortion of the morphology. In the
initial B-core dislocation, α = 0, the system exhibits a mirror
symmetry with respect to the center of the isolated inner B
domain that forms the defect core. Likewise, the final A-core
dislocation, α = 1/2, is symmetric with respect to the center of
the isolated, inner A domain. Since the domain spacings, din and
dout, of the inner and outer lamellae differ, such a shift of the
symmetry axis by din/2 also requires that the relative
positioning of the inner and outer lamellae is altered. As
sketched in Figure 12, the upward shift of the symmetry axis by
din/2 between α = 0 and α = 1/2 is accompanied by a

Figure 11. (a) MFEP for the glide motion of a pair of apposing
dislocations. The system size in the normal direction is Ly = 8/(1 − 1/
18)d0. (b1−b3) Isosurface plots of A density of the portion around the
right dislocation inside the red box for three intermediate
morphologies located at α ≈ 0.0625, α ≈ 0.1094, and α = 0.2500
and their cleaved portion at the left-top showing the cross section of
the broken A domain.

Figure 12. Sketch of the symmetry axis of the B-core dislocation at α =
0 and the A-core dislocation at α = 1/2. The upward shift of the
symmetry axis by din/2 also imposes a shift of the inner and outer
domains with respect to each other by Δy = (dout − din)/2.
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 dislocation glide – barrier for motion perpendicular to stripes   

Li, Müller, Macromolecules 49, 6126 (2016) 
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 dislocation climb: which defect annihilates first?   
system: dislocation pair, χN=30, no pattern, different “impact parameters”  
particle simulations using Single-Chain-in-Mean-Field algorithm 
 
 
 
 
 
 
 
 
dislocation pair with opposite Burgers vectors (different perp. distances) 
       attractive Peach-Koehler force results in defect motion parallel to stripes 
questions: 
a)  how large is the attractive force? 
b)  how fast does the defect move? 
c)  does defect motion/collision result in defect annihilation?  
 

no perpendicular shift Lo perpendiclar shift 2Lo perpendicular shift 



 dislocation climb   

t/τ = 0         112                 225                337               449                506 
4.5 106 SMC 

evaporation climb: 1.26Reo�12.5925Reo�25.185Reo 

t/τ = 0          5.62               11.23             16.85             19.44             20 
1.7 105 SMC 

unconstraint climb: 1.26Reo�22.67Reo�10.07Reo 

t/τ = 0          5.62              11.23             16.85             28                 1000 … 
5 106 SMC 

stagnation climb – metastable dipole: 1.26Reo�15.11Reo�10.07Reo 

no perpend.  
shift 

Lo perpend.  
shift 

2Lo perpend.  
shift 
8 106 SMC 

2Lo vertical  
shift 
8.9 106 SMC 



system: dislocation pair, χN=30, non-patterned surface  
SCFT calculations, string method F[W] 
 
 
 
 
 
 
 
 
 
 
excess free energy depends linearly on distance L (parallel to stripes) 
thermodynamic driving force: excess free energy of extra half lamella 
                                             and same magnitude for all 3 cases 
 
 

 a) how large is the attractive force? 
   

this regime, α < 0.7, the reaction coordinate correlates well with
the distance, L(t), between the defect cores in the direction
parallel to the stripes. Thus, a linear dependence indicates a

distance-independent force, K ∼ −(dΔF/dα)(dα/dL), between
the two apposing dislocations with opposite Burgers vectors.
When the defect cores approach each other, L ∼ d0, there is a
shoulder in the free energy profile but no barrier.
Morphological snapshots in the vicinity of the shoulder of
the free energy profile are depicted in Figure 4. The sequence
of structures and the details of the defect-annihilation process
nicely agree with the simulation snapshots of Figure 1,
suggesting that the MFEP of the EPD free energy functional,
G[W], accurately captures the defect-annihilation path.
In the second case with Δ = d0 (cf. Figure 5), the free energy

Δf also decreases linearly with the reaction coordinate for L0 −
L(t) ∼ α < 0.725, indicating a distance-independent attractive
force between the defects. Deviations from this linear behavior
occur for L ∼ d0, indicating a strong attraction and
thermodynamic driving force toward defect annihilation.
Again the sequence of morphologies along the string and the
absence of a free energy barrier nicely match the configuration
snapshots of the simulations.
Since the third case with Δ = 2d0, presented in Figure 6,

kinetically evolves into a metastable tight dislocation pair, we
choose this tight dislocation pair as the ending morphology of
the string. Note that this ending morphology at α = 1 with two
identical cores is not exactly the same as that of the last
simulation snapshot with two different cores (cf. Figure 1). The
former defect can be formed by connecting the A-end core with
the upper A-lamella in the latter morphology. The evolution
from this metastable tight dislocation pair into a defect-free
structure has been studied by SCFT18 and simulations.34

Similar to the previous case, the excess free energy linearly
decreases along the MFEP until the two dislocations meet at α
≈ 0.8. When the two dislocations pass by each other, there are
deviations from the linear relation between Δf and α that stem
from the distortion of the domains as the metastable state is
formed. The initial, linear behavior again indicates a constant
attractive force, and the MFEP successfully predicts the

Figure 4. (a) MFEPs for the removal of two apposing dislocations
with impact parameter, Δ = 0, for two different boundary conditions:
Ly = 8d0; i.e., the 8 outer lamellae adopt their equilibrium spacing
whereas the 9 inner lamellae are compressed (black cross symbols),
and Ly = 8.458d0, i.e., inner and outer lamellae are equally frustrated
(blue circle symbols). The red dashed line indicates a linear fit for the
linear part, α < 0.7, of the data in the first case. As the reaction
coordinate linearly correlates with the distance between the defect
cores, L (L = 8.212Re0, 4.398Re0, and 2.464Re0 for α = 0, 0,4, and 0.6),
a distance-independent attractive force, −dΔf/dL ≈ 0.498, is extracted.
(b1−b3) Three intermediate morphologies located at α = 0.725, α =
0.825, and α = 0.850, respectively. The inset shows the enlarged
MFEP in the second case.

Figure 5. (a) MFEP for the removal of a pair of dislocations with
impact parameter Δ = d0. The constant force extracted from the linear
part of the free energy profile is −Re0 dΔf/dL ≈ 0.495. Three typical
points, located at α = 0.725, α = 0.850, and α = 0.900 are indicated by
numbered arrows, and their isosurfaces of A density are plotted in
panels b1−b3.

Figure 6. (a) MFEP for the evolution of a pair of dislocations with
impact parameter Δ = 2d0. The constant force is −Re0 dΔf/dL ≈
0.490. (b1−b3) Three intermediate morphologies located at α = 0.500,
α = 0.850, and α = 0.925, respectively.
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this regime, α < 0.7, the reaction coordinate correlates well with
the distance, L(t), between the defect cores in the direction
parallel to the stripes. Thus, a linear dependence indicates a

distance-independent force, K ∼ −(dΔF/dα)(dα/dL), between
the two apposing dislocations with opposite Burgers vectors.
When the defect cores approach each other, L ∼ d0, there is a
shoulder in the free energy profile but no barrier.
Morphological snapshots in the vicinity of the shoulder of
the free energy profile are depicted in Figure 4. The sequence
of structures and the details of the defect-annihilation process
nicely agree with the simulation snapshots of Figure 1,
suggesting that the MFEP of the EPD free energy functional,
G[W], accurately captures the defect-annihilation path.
In the second case with Δ = d0 (cf. Figure 5), the free energy

Δf also decreases linearly with the reaction coordinate for L0 −
L(t) ∼ α < 0.725, indicating a distance-independent attractive
force between the defects. Deviations from this linear behavior
occur for L ∼ d0, indicating a strong attraction and
thermodynamic driving force toward defect annihilation.
Again the sequence of morphologies along the string and the
absence of a free energy barrier nicely match the configuration
snapshots of the simulations.
Since the third case with Δ = 2d0, presented in Figure 6,

kinetically evolves into a metastable tight dislocation pair, we
choose this tight dislocation pair as the ending morphology of
the string. Note that this ending morphology at α = 1 with two
identical cores is not exactly the same as that of the last
simulation snapshot with two different cores (cf. Figure 1). The
former defect can be formed by connecting the A-end core with
the upper A-lamella in the latter morphology. The evolution
from this metastable tight dislocation pair into a defect-free
structure has been studied by SCFT18 and simulations.34

Similar to the previous case, the excess free energy linearly
decreases along the MFEP until the two dislocations meet at α
≈ 0.8. When the two dislocations pass by each other, there are
deviations from the linear relation between Δf and α that stem
from the distortion of the domains as the metastable state is
formed. The initial, linear behavior again indicates a constant
attractive force, and the MFEP successfully predicts the

Figure 4. (a) MFEPs for the removal of two apposing dislocations
with impact parameter, Δ = 0, for two different boundary conditions:
Ly = 8d0; i.e., the 8 outer lamellae adopt their equilibrium spacing
whereas the 9 inner lamellae are compressed (black cross symbols),
and Ly = 8.458d0, i.e., inner and outer lamellae are equally frustrated
(blue circle symbols). The red dashed line indicates a linear fit for the
linear part, α < 0.7, of the data in the first case. As the reaction
coordinate linearly correlates with the distance between the defect
cores, L (L = 8.212Re0, 4.398Re0, and 2.464Re0 for α = 0, 0,4, and 0.6),
a distance-independent attractive force, −dΔf/dL ≈ 0.498, is extracted.
(b1−b3) Three intermediate morphologies located at α = 0.725, α =
0.825, and α = 0.850, respectively. The inset shows the enlarged
MFEP in the second case.

Figure 5. (a) MFEP for the removal of a pair of dislocations with
impact parameter Δ = d0. The constant force extracted from the linear
part of the free energy profile is −Re0 dΔf/dL ≈ 0.495. Three typical
points, located at α = 0.725, α = 0.850, and α = 0.900 are indicated by
numbered arrows, and their isosurfaces of A density are plotted in
panels b1−b3.

Figure 6. (a) MFEP for the evolution of a pair of dislocations with
impact parameter Δ = 2d0. The constant force is −Re0 dΔf/dL ≈
0.490. (b1−b3) Three intermediate morphologies located at α = 0.500,
α = 0.850, and α = 0.925, respectively.
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this regime, α < 0.7, the reaction coordinate correlates well with
the distance, L(t), between the defect cores in the direction
parallel to the stripes. Thus, a linear dependence indicates a

distance-independent force, K ∼ −(dΔF/dα)(dα/dL), between
the two apposing dislocations with opposite Burgers vectors.
When the defect cores approach each other, L ∼ d0, there is a
shoulder in the free energy profile but no barrier.
Morphological snapshots in the vicinity of the shoulder of
the free energy profile are depicted in Figure 4. The sequence
of structures and the details of the defect-annihilation process
nicely agree with the simulation snapshots of Figure 1,
suggesting that the MFEP of the EPD free energy functional,
G[W], accurately captures the defect-annihilation path.
In the second case with Δ = d0 (cf. Figure 5), the free energy

Δf also decreases linearly with the reaction coordinate for L0 −
L(t) ∼ α < 0.725, indicating a distance-independent attractive
force between the defects. Deviations from this linear behavior
occur for L ∼ d0, indicating a strong attraction and
thermodynamic driving force toward defect annihilation.
Again the sequence of morphologies along the string and the
absence of a free energy barrier nicely match the configuration
snapshots of the simulations.
Since the third case with Δ = 2d0, presented in Figure 6,

kinetically evolves into a metastable tight dislocation pair, we
choose this tight dislocation pair as the ending morphology of
the string. Note that this ending morphology at α = 1 with two
identical cores is not exactly the same as that of the last
simulation snapshot with two different cores (cf. Figure 1). The
former defect can be formed by connecting the A-end core with
the upper A-lamella in the latter morphology. The evolution
from this metastable tight dislocation pair into a defect-free
structure has been studied by SCFT18 and simulations.34

Similar to the previous case, the excess free energy linearly
decreases along the MFEP until the two dislocations meet at α
≈ 0.8. When the two dislocations pass by each other, there are
deviations from the linear relation between Δf and α that stem
from the distortion of the domains as the metastable state is
formed. The initial, linear behavior again indicates a constant
attractive force, and the MFEP successfully predicts the

Figure 4. (a) MFEPs for the removal of two apposing dislocations
with impact parameter, Δ = 0, for two different boundary conditions:
Ly = 8d0; i.e., the 8 outer lamellae adopt their equilibrium spacing
whereas the 9 inner lamellae are compressed (black cross symbols),
and Ly = 8.458d0, i.e., inner and outer lamellae are equally frustrated
(blue circle symbols). The red dashed line indicates a linear fit for the
linear part, α < 0.7, of the data in the first case. As the reaction
coordinate linearly correlates with the distance between the defect
cores, L (L = 8.212Re0, 4.398Re0, and 2.464Re0 for α = 0, 0,4, and 0.6),
a distance-independent attractive force, −dΔf/dL ≈ 0.498, is extracted.
(b1−b3) Three intermediate morphologies located at α = 0.725, α =
0.825, and α = 0.850, respectively. The inset shows the enlarged
MFEP in the second case.

Figure 5. (a) MFEP for the removal of a pair of dislocations with
impact parameter Δ = d0. The constant force extracted from the linear
part of the free energy profile is −Re0 dΔf/dL ≈ 0.495. Three typical
points, located at α = 0.725, α = 0.850, and α = 0.900 are indicated by
numbered arrows, and their isosurfaces of A density are plotted in
panels b1−b3.

Figure 6. (a) MFEP for the evolution of a pair of dislocations with
impact parameter Δ = 2d0. The constant force is −Re0 dΔf/dL ≈
0.490. (b1−b3) Three intermediate morphologies located at α = 0.500,
α = 0.850, and α = 0.925, respectively.
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this regime, α < 0.7, the reaction coordinate correlates well with
the distance, L(t), between the defect cores in the direction
parallel to the stripes. Thus, a linear dependence indicates a

distance-independent force, K ∼ −(dΔF/dα)(dα/dL), between
the two apposing dislocations with opposite Burgers vectors.
When the defect cores approach each other, L ∼ d0, there is a
shoulder in the free energy profile but no barrier.
Morphological snapshots in the vicinity of the shoulder of
the free energy profile are depicted in Figure 4. The sequence
of structures and the details of the defect-annihilation process
nicely agree with the simulation snapshots of Figure 1,
suggesting that the MFEP of the EPD free energy functional,
G[W], accurately captures the defect-annihilation path.
In the second case with Δ = d0 (cf. Figure 5), the free energy

Δf also decreases linearly with the reaction coordinate for L0 −
L(t) ∼ α < 0.725, indicating a distance-independent attractive
force between the defects. Deviations from this linear behavior
occur for L ∼ d0, indicating a strong attraction and
thermodynamic driving force toward defect annihilation.
Again the sequence of morphologies along the string and the
absence of a free energy barrier nicely match the configuration
snapshots of the simulations.
Since the third case with Δ = 2d0, presented in Figure 6,

kinetically evolves into a metastable tight dislocation pair, we
choose this tight dislocation pair as the ending morphology of
the string. Note that this ending morphology at α = 1 with two
identical cores is not exactly the same as that of the last
simulation snapshot with two different cores (cf. Figure 1). The
former defect can be formed by connecting the A-end core with
the upper A-lamella in the latter morphology. The evolution
from this metastable tight dislocation pair into a defect-free
structure has been studied by SCFT18 and simulations.34

Similar to the previous case, the excess free energy linearly
decreases along the MFEP until the two dislocations meet at α
≈ 0.8. When the two dislocations pass by each other, there are
deviations from the linear relation between Δf and α that stem
from the distortion of the domains as the metastable state is
formed. The initial, linear behavior again indicates a constant
attractive force, and the MFEP successfully predicts the

Figure 4. (a) MFEPs for the removal of two apposing dislocations
with impact parameter, Δ = 0, for two different boundary conditions:
Ly = 8d0; i.e., the 8 outer lamellae adopt their equilibrium spacing
whereas the 9 inner lamellae are compressed (black cross symbols),
and Ly = 8.458d0, i.e., inner and outer lamellae are equally frustrated
(blue circle symbols). The red dashed line indicates a linear fit for the
linear part, α < 0.7, of the data in the first case. As the reaction
coordinate linearly correlates with the distance between the defect
cores, L (L = 8.212Re0, 4.398Re0, and 2.464Re0 for α = 0, 0,4, and 0.6),
a distance-independent attractive force, −dΔf/dL ≈ 0.498, is extracted.
(b1−b3) Three intermediate morphologies located at α = 0.725, α =
0.825, and α = 0.850, respectively. The inset shows the enlarged
MFEP in the second case.

Figure 5. (a) MFEP for the removal of a pair of dislocations with
impact parameter Δ = d0. The constant force extracted from the linear
part of the free energy profile is −Re0 dΔf/dL ≈ 0.495. Three typical
points, located at α = 0.725, α = 0.850, and α = 0.900 are indicated by
numbered arrows, and their isosurfaces of A density are plotted in
panels b1−b3.

Figure 6. (a) MFEP for the evolution of a pair of dislocations with
impact parameter Δ = 2d0. The constant force is −Re0 dΔf/dL ≈
0.490. (b1−b3) Three intermediate morphologies located at α = 0.500,
α = 0.850, and α = 0.925, respectively.
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this regime, α < 0.7, the reaction coordinate correlates well with
the distance, L(t), between the defect cores in the direction
parallel to the stripes. Thus, a linear dependence indicates a

distance-independent force, K ∼ −(dΔF/dα)(dα/dL), between
the two apposing dislocations with opposite Burgers vectors.
When the defect cores approach each other, L ∼ d0, there is a
shoulder in the free energy profile but no barrier.
Morphological snapshots in the vicinity of the shoulder of
the free energy profile are depicted in Figure 4. The sequence
of structures and the details of the defect-annihilation process
nicely agree with the simulation snapshots of Figure 1,
suggesting that the MFEP of the EPD free energy functional,
G[W], accurately captures the defect-annihilation path.
In the second case with Δ = d0 (cf. Figure 5), the free energy

Δf also decreases linearly with the reaction coordinate for L0 −
L(t) ∼ α < 0.725, indicating a distance-independent attractive
force between the defects. Deviations from this linear behavior
occur for L ∼ d0, indicating a strong attraction and
thermodynamic driving force toward defect annihilation.
Again the sequence of morphologies along the string and the
absence of a free energy barrier nicely match the configuration
snapshots of the simulations.
Since the third case with Δ = 2d0, presented in Figure 6,

kinetically evolves into a metastable tight dislocation pair, we
choose this tight dislocation pair as the ending morphology of
the string. Note that this ending morphology at α = 1 with two
identical cores is not exactly the same as that of the last
simulation snapshot with two different cores (cf. Figure 1). The
former defect can be formed by connecting the A-end core with
the upper A-lamella in the latter morphology. The evolution
from this metastable tight dislocation pair into a defect-free
structure has been studied by SCFT18 and simulations.34

Similar to the previous case, the excess free energy linearly
decreases along the MFEP until the two dislocations meet at α
≈ 0.8. When the two dislocations pass by each other, there are
deviations from the linear relation between Δf and α that stem
from the distortion of the domains as the metastable state is
formed. The initial, linear behavior again indicates a constant
attractive force, and the MFEP successfully predicts the

Figure 4. (a) MFEPs for the removal of two apposing dislocations
with impact parameter, Δ = 0, for two different boundary conditions:
Ly = 8d0; i.e., the 8 outer lamellae adopt their equilibrium spacing
whereas the 9 inner lamellae are compressed (black cross symbols),
and Ly = 8.458d0, i.e., inner and outer lamellae are equally frustrated
(blue circle symbols). The red dashed line indicates a linear fit for the
linear part, α < 0.7, of the data in the first case. As the reaction
coordinate linearly correlates with the distance between the defect
cores, L (L = 8.212Re0, 4.398Re0, and 2.464Re0 for α = 0, 0,4, and 0.6),
a distance-independent attractive force, −dΔf/dL ≈ 0.498, is extracted.
(b1−b3) Three intermediate morphologies located at α = 0.725, α =
0.825, and α = 0.850, respectively. The inset shows the enlarged
MFEP in the second case.

Figure 5. (a) MFEP for the removal of a pair of dislocations with
impact parameter Δ = d0. The constant force extracted from the linear
part of the free energy profile is −Re0 dΔf/dL ≈ 0.495. Three typical
points, located at α = 0.725, α = 0.850, and α = 0.900 are indicated by
numbered arrows, and their isosurfaces of A density are plotted in
panels b1−b3.

Figure 6. (a) MFEP for the evolution of a pair of dislocations with
impact parameter Δ = 2d0. The constant force is −Re0 dΔf/dL ≈
0.490. (b1−b3) Three intermediate morphologies located at α = 0.500,
α = 0.850, and α = 0.925, respectively.
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this regime, α < 0.7, the reaction coordinate correlates well with
the distance, L(t), between the defect cores in the direction
parallel to the stripes. Thus, a linear dependence indicates a

distance-independent force, K ∼ −(dΔF/dα)(dα/dL), between
the two apposing dislocations with opposite Burgers vectors.
When the defect cores approach each other, L ∼ d0, there is a
shoulder in the free energy profile but no barrier.
Morphological snapshots in the vicinity of the shoulder of
the free energy profile are depicted in Figure 4. The sequence
of structures and the details of the defect-annihilation process
nicely agree with the simulation snapshots of Figure 1,
suggesting that the MFEP of the EPD free energy functional,
G[W], accurately captures the defect-annihilation path.
In the second case with Δ = d0 (cf. Figure 5), the free energy

Δf also decreases linearly with the reaction coordinate for L0 −
L(t) ∼ α < 0.725, indicating a distance-independent attractive
force between the defects. Deviations from this linear behavior
occur for L ∼ d0, indicating a strong attraction and
thermodynamic driving force toward defect annihilation.
Again the sequence of morphologies along the string and the
absence of a free energy barrier nicely match the configuration
snapshots of the simulations.
Since the third case with Δ = 2d0, presented in Figure 6,

kinetically evolves into a metastable tight dislocation pair, we
choose this tight dislocation pair as the ending morphology of
the string. Note that this ending morphology at α = 1 with two
identical cores is not exactly the same as that of the last
simulation snapshot with two different cores (cf. Figure 1). The
former defect can be formed by connecting the A-end core with
the upper A-lamella in the latter morphology. The evolution
from this metastable tight dislocation pair into a defect-free
structure has been studied by SCFT18 and simulations.34

Similar to the previous case, the excess free energy linearly
decreases along the MFEP until the two dislocations meet at α
≈ 0.8. When the two dislocations pass by each other, there are
deviations from the linear relation between Δf and α that stem
from the distortion of the domains as the metastable state is
formed. The initial, linear behavior again indicates a constant
attractive force, and the MFEP successfully predicts the

Figure 4. (a) MFEPs for the removal of two apposing dislocations
with impact parameter, Δ = 0, for two different boundary conditions:
Ly = 8d0; i.e., the 8 outer lamellae adopt their equilibrium spacing
whereas the 9 inner lamellae are compressed (black cross symbols),
and Ly = 8.458d0, i.e., inner and outer lamellae are equally frustrated
(blue circle symbols). The red dashed line indicates a linear fit for the
linear part, α < 0.7, of the data in the first case. As the reaction
coordinate linearly correlates with the distance between the defect
cores, L (L = 8.212Re0, 4.398Re0, and 2.464Re0 for α = 0, 0,4, and 0.6),
a distance-independent attractive force, −dΔf/dL ≈ 0.498, is extracted.
(b1−b3) Three intermediate morphologies located at α = 0.725, α =
0.825, and α = 0.850, respectively. The inset shows the enlarged
MFEP in the second case.

Figure 5. (a) MFEP for the removal of a pair of dislocations with
impact parameter Δ = d0. The constant force extracted from the linear
part of the free energy profile is −Re0 dΔf/dL ≈ 0.495. Three typical
points, located at α = 0.725, α = 0.850, and α = 0.900 are indicated by
numbered arrows, and their isosurfaces of A density are plotted in
panels b1−b3.

Figure 6. (a) MFEP for the evolution of a pair of dislocations with
impact parameter Δ = 2d0. The constant force is −Re0 dΔf/dL ≈
0.490. (b1−b3) Three intermediate morphologies located at α = 0.500,
α = 0.850, and α = 0.925, respectively.
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distance-independent force, K ∼ −(dΔF/dα)(dα/dL), between
the two apposing dislocations with opposite Burgers vectors.
When the defect cores approach each other, L ∼ d0, there is a
shoulder in the free energy profile but no barrier.
Morphological snapshots in the vicinity of the shoulder of
the free energy profile are depicted in Figure 4. The sequence
of structures and the details of the defect-annihilation process
nicely agree with the simulation snapshots of Figure 1,
suggesting that the MFEP of the EPD free energy functional,
G[W], accurately captures the defect-annihilation path.
In the second case with Δ = d0 (cf. Figure 5), the free energy

Δf also decreases linearly with the reaction coordinate for L0 −
L(t) ∼ α < 0.725, indicating a distance-independent attractive
force between the defects. Deviations from this linear behavior
occur for L ∼ d0, indicating a strong attraction and
thermodynamic driving force toward defect annihilation.
Again the sequence of morphologies along the string and the
absence of a free energy barrier nicely match the configuration
snapshots of the simulations.
Since the third case with Δ = 2d0, presented in Figure 6,

kinetically evolves into a metastable tight dislocation pair, we
choose this tight dislocation pair as the ending morphology of
the string. Note that this ending morphology at α = 1 with two
identical cores is not exactly the same as that of the last
simulation snapshot with two different cores (cf. Figure 1). The
former defect can be formed by connecting the A-end core with
the upper A-lamella in the latter morphology. The evolution
from this metastable tight dislocation pair into a defect-free
structure has been studied by SCFT18 and simulations.34

Similar to the previous case, the excess free energy linearly
decreases along the MFEP until the two dislocations meet at α
≈ 0.8. When the two dislocations pass by each other, there are
deviations from the linear relation between Δf and α that stem
from the distortion of the domains as the metastable state is
formed. The initial, linear behavior again indicates a constant
attractive force, and the MFEP successfully predicts the
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with impact parameter, Δ = 0, for two different boundary conditions:
Ly = 8d0; i.e., the 8 outer lamellae adopt their equilibrium spacing
whereas the 9 inner lamellae are compressed (black cross symbols),
and Ly = 8.458d0, i.e., inner and outer lamellae are equally frustrated
(blue circle symbols). The red dashed line indicates a linear fit for the
linear part, α < 0.7, of the data in the first case. As the reaction
coordinate linearly correlates with the distance between the defect
cores, L (L = 8.212Re0, 4.398Re0, and 2.464Re0 for α = 0, 0,4, and 0.6),
a distance-independent attractive force, −dΔf/dL ≈ 0.498, is extracted.
(b1−b3) Three intermediate morphologies located at α = 0.725, α =
0.825, and α = 0.850, respectively. The inset shows the enlarged
MFEP in the second case.

Figure 5. (a) MFEP for the removal of a pair of dislocations with
impact parameter Δ = d0. The constant force extracted from the linear
part of the free energy profile is −Re0 dΔf/dL ≈ 0.495. Three typical
points, located at α = 0.725, α = 0.850, and α = 0.900 are indicated by
numbered arrows, and their isosurfaces of A density are plotted in
panels b1−b3.

Figure 6. (a) MFEP for the evolution of a pair of dislocations with
impact parameter Δ = 2d0. The constant force is −Re0 dΔf/dL ≈
0.490. (b1−b3) Three intermediate morphologies located at α = 0.500,
α = 0.850, and α = 0.925, respectively.
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parallel to the stripes. Thus, a linear dependence indicates a

distance-independent force, K ∼ −(dΔF/dα)(dα/dL), between
the two apposing dislocations with opposite Burgers vectors.
When the defect cores approach each other, L ∼ d0, there is a
shoulder in the free energy profile but no barrier.
Morphological snapshots in the vicinity of the shoulder of
the free energy profile are depicted in Figure 4. The sequence
of structures and the details of the defect-annihilation process
nicely agree with the simulation snapshots of Figure 1,
suggesting that the MFEP of the EPD free energy functional,
G[W], accurately captures the defect-annihilation path.
In the second case with Δ = d0 (cf. Figure 5), the free energy

Δf also decreases linearly with the reaction coordinate for L0 −
L(t) ∼ α < 0.725, indicating a distance-independent attractive
force between the defects. Deviations from this linear behavior
occur for L ∼ d0, indicating a strong attraction and
thermodynamic driving force toward defect annihilation.
Again the sequence of morphologies along the string and the
absence of a free energy barrier nicely match the configuration
snapshots of the simulations.
Since the third case with Δ = 2d0, presented in Figure 6,

kinetically evolves into a metastable tight dislocation pair, we
choose this tight dislocation pair as the ending morphology of
the string. Note that this ending morphology at α = 1 with two
identical cores is not exactly the same as that of the last
simulation snapshot with two different cores (cf. Figure 1). The
former defect can be formed by connecting the A-end core with
the upper A-lamella in the latter morphology. The evolution
from this metastable tight dislocation pair into a defect-free
structure has been studied by SCFT18 and simulations.34

Similar to the previous case, the excess free energy linearly
decreases along the MFEP until the two dislocations meet at α
≈ 0.8. When the two dislocations pass by each other, there are
deviations from the linear relation between Δf and α that stem
from the distortion of the domains as the metastable state is
formed. The initial, linear behavior again indicates a constant
attractive force, and the MFEP successfully predicts the

Figure 4. (a) MFEPs for the removal of two apposing dislocations
with impact parameter, Δ = 0, for two different boundary conditions:
Ly = 8d0; i.e., the 8 outer lamellae adopt their equilibrium spacing
whereas the 9 inner lamellae are compressed (black cross symbols),
and Ly = 8.458d0, i.e., inner and outer lamellae are equally frustrated
(blue circle symbols). The red dashed line indicates a linear fit for the
linear part, α < 0.7, of the data in the first case. As the reaction
coordinate linearly correlates with the distance between the defect
cores, L (L = 8.212Re0, 4.398Re0, and 2.464Re0 for α = 0, 0,4, and 0.6),
a distance-independent attractive force, −dΔf/dL ≈ 0.498, is extracted.
(b1−b3) Three intermediate morphologies located at α = 0.725, α =
0.825, and α = 0.850, respectively. The inset shows the enlarged
MFEP in the second case.

Figure 5. (a) MFEP for the removal of a pair of dislocations with
impact parameter Δ = d0. The constant force extracted from the linear
part of the free energy profile is −Re0 dΔf/dL ≈ 0.495. Three typical
points, located at α = 0.725, α = 0.850, and α = 0.900 are indicated by
numbered arrows, and their isosurfaces of A density are plotted in
panels b1−b3.

Figure 6. (a) MFEP for the evolution of a pair of dislocations with
impact parameter Δ = 2d0. The constant force is −Re0 dΔf/dL ≈
0.490. (b1−b3) Three intermediate morphologies located at α = 0.500,
α = 0.850, and α = 0.925, respectively.
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the distance, L(t), between the defect cores in the direction
parallel to the stripes. Thus, a linear dependence indicates a

distance-independent force, K ∼ −(dΔF/dα)(dα/dL), between
the two apposing dislocations with opposite Burgers vectors.
When the defect cores approach each other, L ∼ d0, there is a
shoulder in the free energy profile but no barrier.
Morphological snapshots in the vicinity of the shoulder of
the free energy profile are depicted in Figure 4. The sequence
of structures and the details of the defect-annihilation process
nicely agree with the simulation snapshots of Figure 1,
suggesting that the MFEP of the EPD free energy functional,
G[W], accurately captures the defect-annihilation path.
In the second case with Δ = d0 (cf. Figure 5), the free energy

Δf also decreases linearly with the reaction coordinate for L0 −
L(t) ∼ α < 0.725, indicating a distance-independent attractive
force between the defects. Deviations from this linear behavior
occur for L ∼ d0, indicating a strong attraction and
thermodynamic driving force toward defect annihilation.
Again the sequence of morphologies along the string and the
absence of a free energy barrier nicely match the configuration
snapshots of the simulations.
Since the third case with Δ = 2d0, presented in Figure 6,

kinetically evolves into a metastable tight dislocation pair, we
choose this tight dislocation pair as the ending morphology of
the string. Note that this ending morphology at α = 1 with two
identical cores is not exactly the same as that of the last
simulation snapshot with two different cores (cf. Figure 1). The
former defect can be formed by connecting the A-end core with
the upper A-lamella in the latter morphology. The evolution
from this metastable tight dislocation pair into a defect-free
structure has been studied by SCFT18 and simulations.34

Similar to the previous case, the excess free energy linearly
decreases along the MFEP until the two dislocations meet at α
≈ 0.8. When the two dislocations pass by each other, there are
deviations from the linear relation between Δf and α that stem
from the distortion of the domains as the metastable state is
formed. The initial, linear behavior again indicates a constant
attractive force, and the MFEP successfully predicts the

Figure 4. (a) MFEPs for the removal of two apposing dislocations
with impact parameter, Δ = 0, for two different boundary conditions:
Ly = 8d0; i.e., the 8 outer lamellae adopt their equilibrium spacing
whereas the 9 inner lamellae are compressed (black cross symbols),
and Ly = 8.458d0, i.e., inner and outer lamellae are equally frustrated
(blue circle symbols). The red dashed line indicates a linear fit for the
linear part, α < 0.7, of the data in the first case. As the reaction
coordinate linearly correlates with the distance between the defect
cores, L (L = 8.212Re0, 4.398Re0, and 2.464Re0 for α = 0, 0,4, and 0.6),
a distance-independent attractive force, −dΔf/dL ≈ 0.498, is extracted.
(b1−b3) Three intermediate morphologies located at α = 0.725, α =
0.825, and α = 0.850, respectively. The inset shows the enlarged
MFEP in the second case.

Figure 5. (a) MFEP for the removal of a pair of dislocations with
impact parameter Δ = d0. The constant force extracted from the linear
part of the free energy profile is −Re0 dΔf/dL ≈ 0.495. Three typical
points, located at α = 0.725, α = 0.850, and α = 0.900 are indicated by
numbered arrows, and their isosurfaces of A density are plotted in
panels b1−b3.

Figure 6. (a) MFEP for the evolution of a pair of dislocations with
impact parameter Δ = 2d0. The constant force is −Re0 dΔf/dL ≈
0.490. (b1−b3) Three intermediate morphologies located at α = 0.500,
α = 0.850, and α = 0.925, respectively.

Macromolecules Article

DOI: 10.1021/acs.macromol.6b01088
Macromolecules 2016, 49, 6126−6138

6131

this regime, α < 0.7, the reaction coordinate correlates well with
the distance, L(t), between the defect cores in the direction
parallel to the stripes. Thus, a linear dependence indicates a

distance-independent force, K ∼ −(dΔF/dα)(dα/dL), between
the two apposing dislocations with opposite Burgers vectors.
When the defect cores approach each other, L ∼ d0, there is a
shoulder in the free energy profile but no barrier.
Morphological snapshots in the vicinity of the shoulder of
the free energy profile are depicted in Figure 4. The sequence
of structures and the details of the defect-annihilation process
nicely agree with the simulation snapshots of Figure 1,
suggesting that the MFEP of the EPD free energy functional,
G[W], accurately captures the defect-annihilation path.
In the second case with Δ = d0 (cf. Figure 5), the free energy

Δf also decreases linearly with the reaction coordinate for L0 −
L(t) ∼ α < 0.725, indicating a distance-independent attractive
force between the defects. Deviations from this linear behavior
occur for L ∼ d0, indicating a strong attraction and
thermodynamic driving force toward defect annihilation.
Again the sequence of morphologies along the string and the
absence of a free energy barrier nicely match the configuration
snapshots of the simulations.
Since the third case with Δ = 2d0, presented in Figure 6,

kinetically evolves into a metastable tight dislocation pair, we
choose this tight dislocation pair as the ending morphology of
the string. Note that this ending morphology at α = 1 with two
identical cores is not exactly the same as that of the last
simulation snapshot with two different cores (cf. Figure 1). The
former defect can be formed by connecting the A-end core with
the upper A-lamella in the latter morphology. The evolution
from this metastable tight dislocation pair into a defect-free
structure has been studied by SCFT18 and simulations.34

Similar to the previous case, the excess free energy linearly
decreases along the MFEP until the two dislocations meet at α
≈ 0.8. When the two dislocations pass by each other, there are
deviations from the linear relation between Δf and α that stem
from the distortion of the domains as the metastable state is
formed. The initial, linear behavior again indicates a constant
attractive force, and the MFEP successfully predicts the

Figure 4. (a) MFEPs for the removal of two apposing dislocations
with impact parameter, Δ = 0, for two different boundary conditions:
Ly = 8d0; i.e., the 8 outer lamellae adopt their equilibrium spacing
whereas the 9 inner lamellae are compressed (black cross symbols),
and Ly = 8.458d0, i.e., inner and outer lamellae are equally frustrated
(blue circle symbols). The red dashed line indicates a linear fit for the
linear part, α < 0.7, of the data in the first case. As the reaction
coordinate linearly correlates with the distance between the defect
cores, L (L = 8.212Re0, 4.398Re0, and 2.464Re0 for α = 0, 0,4, and 0.6),
a distance-independent attractive force, −dΔf/dL ≈ 0.498, is extracted.
(b1−b3) Three intermediate morphologies located at α = 0.725, α =
0.825, and α = 0.850, respectively. The inset shows the enlarged
MFEP in the second case.

Figure 5. (a) MFEP for the removal of a pair of dislocations with
impact parameter Δ = d0. The constant force extracted from the linear
part of the free energy profile is −Re0 dΔf/dL ≈ 0.495. Three typical
points, located at α = 0.725, α = 0.850, and α = 0.900 are indicated by
numbered arrows, and their isosurfaces of A density are plotted in
panels b1−b3.

Figure 6. (a) MFEP for the evolution of a pair of dislocations with
impact parameter Δ = 2d0. The constant force is −Re0 dΔf/dL ≈
0.490. (b1−b3) Three intermediate morphologies located at α = 0.500,
α = 0.850, and α = 0.925, respectively.
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this regime, α < 0.7, the reaction coordinate correlates well with
the distance, L(t), between the defect cores in the direction
parallel to the stripes. Thus, a linear dependence indicates a

distance-independent force, K ∼ −(dΔF/dα)(dα/dL), between
the two apposing dislocations with opposite Burgers vectors.
When the defect cores approach each other, L ∼ d0, there is a
shoulder in the free energy profile but no barrier.
Morphological snapshots in the vicinity of the shoulder of
the free energy profile are depicted in Figure 4. The sequence
of structures and the details of the defect-annihilation process
nicely agree with the simulation snapshots of Figure 1,
suggesting that the MFEP of the EPD free energy functional,
G[W], accurately captures the defect-annihilation path.
In the second case with Δ = d0 (cf. Figure 5), the free energy

Δf also decreases linearly with the reaction coordinate for L0 −
L(t) ∼ α < 0.725, indicating a distance-independent attractive
force between the defects. Deviations from this linear behavior
occur for L ∼ d0, indicating a strong attraction and
thermodynamic driving force toward defect annihilation.
Again the sequence of morphologies along the string and the
absence of a free energy barrier nicely match the configuration
snapshots of the simulations.
Since the third case with Δ = 2d0, presented in Figure 6,

kinetically evolves into a metastable tight dislocation pair, we
choose this tight dislocation pair as the ending morphology of
the string. Note that this ending morphology at α = 1 with two
identical cores is not exactly the same as that of the last
simulation snapshot with two different cores (cf. Figure 1). The
former defect can be formed by connecting the A-end core with
the upper A-lamella in the latter morphology. The evolution
from this metastable tight dislocation pair into a defect-free
structure has been studied by SCFT18 and simulations.34

Similar to the previous case, the excess free energy linearly
decreases along the MFEP until the two dislocations meet at α
≈ 0.8. When the two dislocations pass by each other, there are
deviations from the linear relation between Δf and α that stem
from the distortion of the domains as the metastable state is
formed. The initial, linear behavior again indicates a constant
attractive force, and the MFEP successfully predicts the

Figure 4. (a) MFEPs for the removal of two apposing dislocations
with impact parameter, Δ = 0, for two different boundary conditions:
Ly = 8d0; i.e., the 8 outer lamellae adopt their equilibrium spacing
whereas the 9 inner lamellae are compressed (black cross symbols),
and Ly = 8.458d0, i.e., inner and outer lamellae are equally frustrated
(blue circle symbols). The red dashed line indicates a linear fit for the
linear part, α < 0.7, of the data in the first case. As the reaction
coordinate linearly correlates with the distance between the defect
cores, L (L = 8.212Re0, 4.398Re0, and 2.464Re0 for α = 0, 0,4, and 0.6),
a distance-independent attractive force, −dΔf/dL ≈ 0.498, is extracted.
(b1−b3) Three intermediate morphologies located at α = 0.725, α =
0.825, and α = 0.850, respectively. The inset shows the enlarged
MFEP in the second case.

Figure 5. (a) MFEP for the removal of a pair of dislocations with
impact parameter Δ = d0. The constant force extracted from the linear
part of the free energy profile is −Re0 dΔf/dL ≈ 0.495. Three typical
points, located at α = 0.725, α = 0.850, and α = 0.900 are indicated by
numbered arrows, and their isosurfaces of A density are plotted in
panels b1−b3.

Figure 6. (a) MFEP for the evolution of a pair of dislocations with
impact parameter Δ = 2d0. The constant force is −Re0 dΔf/dL ≈
0.490. (b1−b3) Three intermediate morphologies located at α = 0.500,
α = 0.850, and α = 0.925, respectively.
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parallel to the stripes. Thus, a linear dependence indicates a

distance-independent force, K ∼ −(dΔF/dα)(dα/dL), between
the two apposing dislocations with opposite Burgers vectors.
When the defect cores approach each other, L ∼ d0, there is a
shoulder in the free energy profile but no barrier.
Morphological snapshots in the vicinity of the shoulder of
the free energy profile are depicted in Figure 4. The sequence
of structures and the details of the defect-annihilation process
nicely agree with the simulation snapshots of Figure 1,
suggesting that the MFEP of the EPD free energy functional,
G[W], accurately captures the defect-annihilation path.
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Δf also decreases linearly with the reaction coordinate for L0 −
L(t) ∼ α < 0.725, indicating a distance-independent attractive
force between the defects. Deviations from this linear behavior
occur for L ∼ d0, indicating a strong attraction and
thermodynamic driving force toward defect annihilation.
Again the sequence of morphologies along the string and the
absence of a free energy barrier nicely match the configuration
snapshots of the simulations.
Since the third case with Δ = 2d0, presented in Figure 6,

kinetically evolves into a metastable tight dislocation pair, we
choose this tight dislocation pair as the ending morphology of
the string. Note that this ending morphology at α = 1 with two
identical cores is not exactly the same as that of the last
simulation snapshot with two different cores (cf. Figure 1). The
former defect can be formed by connecting the A-end core with
the upper A-lamella in the latter morphology. The evolution
from this metastable tight dislocation pair into a defect-free
structure has been studied by SCFT18 and simulations.34

Similar to the previous case, the excess free energy linearly
decreases along the MFEP until the two dislocations meet at α
≈ 0.8. When the two dislocations pass by each other, there are
deviations from the linear relation between Δf and α that stem
from the distortion of the domains as the metastable state is
formed. The initial, linear behavior again indicates a constant
attractive force, and the MFEP successfully predicts the

Figure 4. (a) MFEPs for the removal of two apposing dislocations
with impact parameter, Δ = 0, for two different boundary conditions:
Ly = 8d0; i.e., the 8 outer lamellae adopt their equilibrium spacing
whereas the 9 inner lamellae are compressed (black cross symbols),
and Ly = 8.458d0, i.e., inner and outer lamellae are equally frustrated
(blue circle symbols). The red dashed line indicates a linear fit for the
linear part, α < 0.7, of the data in the first case. As the reaction
coordinate linearly correlates with the distance between the defect
cores, L (L = 8.212Re0, 4.398Re0, and 2.464Re0 for α = 0, 0,4, and 0.6),
a distance-independent attractive force, −dΔf/dL ≈ 0.498, is extracted.
(b1−b3) Three intermediate morphologies located at α = 0.725, α =
0.825, and α = 0.850, respectively. The inset shows the enlarged
MFEP in the second case.

Figure 5. (a) MFEP for the removal of a pair of dislocations with
impact parameter Δ = d0. The constant force extracted from the linear
part of the free energy profile is −Re0 dΔf/dL ≈ 0.495. Three typical
points, located at α = 0.725, α = 0.850, and α = 0.900 are indicated by
numbered arrows, and their isosurfaces of A density are plotted in
panels b1−b3.

Figure 6. (a) MFEP for the evolution of a pair of dislocations with
impact parameter Δ = 2d0. The constant force is −Re0 dΔf/dL ≈
0.490. (b1−b3) Three intermediate morphologies located at α = 0.500,
α = 0.850, and α = 0.925, respectively.
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system: dislocation pair, χN=30, non-patterned surface  
SCFT calculations, string method F[W] 
 
 
 
 
 
 
 
 
 
 
excess free energy depends linearly on distance L (parallel to stripes) 
thermodynamic driving force: excess free energy of extra half lamella 
                                             and same magnitude for all 3 cases 
 
 

 a) how large is the attractive force? 
   

stagnation climb: defects collide and form  
a tight dislocation dipole – a metastable state 
where Peach-Koehler forces vanish  
(stagnation point) 
       no (spontaneous) defect annihilation 

2Lo perpendicular shift 

Li, Müller, Macromolecules 49, 6126 (2016) 



 a) how large is the attractive force? 
   

L(t)�

system: dislocation pair, χN=30, non-patterned surface, (24Lo)2  
SCFT calculations, Lo=1.825Re, f=1/2 
 
 
 
 
 
 
 
 
 
 eq

ui
lib

riu
m

 la
m

ell
ae

, d
o 

eq
ui

lib
riu

m
 la

m
ell

ae
, d

o 

eq
ui

lib
riu

m
 la

m
ell

ae
, d

o 

eq
ui

lib
riu

m
 la

m
ell

ae
, d

o 

compressed  
lamellae, 

d=Ndo/(N+1) 

�Fd ⇠ LN(d� d0)
2 = Ld20

✓
N

N + 1
� 1

◆2

⇡ Ld20
N

N=24+1 N=24 

Li, Müller, Macromolecules 49, 6126 (2016) 



system: dislocation pair, χN=30, non-patterned surface, (24Lo)2  
SCFT calculations, Lo=1.825Re, f=1/2 
 
 
 
 
 
 
 
 
 
 

3D results for smaller systems, Δfd linearly depends on the
distance, L, corresponding to a constant, attractive force
between the defects. Thus, even for these large systems the
boundary-induced force dominates the behavior.
In accord with the phenomenological considerations, we find

that the force decreases as we increase the perpendicular system
extension, Ly. In Figure 9, we plot the magnitude of the force,

i.e., the slope of the excess free energy indicated by the straight
lines in Figure 8, as a function of Np/(Np + 1)2, as suggested by
the phenomenological considerations. Importantly, a linear
extrapolation toward Np → ∞, indicated by the blue solid line,
reveals a finite abscissa offset that provides an order-of-
magnitude estimate of the Peach−Koehler force. We observe
that the data for the largest perpendicular size, Ly = 48d0,
slightly deviates from the suggested linear behavior, indicating
that simple assumptions may become inaccurate for large Ly.
Up to now we have only considered the limit of vanishingly

low defect density by studying a pair of dislocations and the
interactions between themselves and with the periodic
boundaries. At earlier times during the structure formation,
the defect density is larger and the long-range strain fields of
multiple defects will interfere. In order to explore the
interaction between multiple defects, we consider four
dislocation (see Figure 10). Dislocations with opposite Burgers
vector are characterized by the impact parameter, Δ = 2d0, and

the boundary-induced forces result in a pairwise condensation
into tight, metastable dislocation dipoles (via stagnation
climbs). Figure 10 demonstrates that the strain-field-mediated
and boundary-induced interactions between these tight
dislocation dipoles are very small; i.e., the structure is almost
completely stress-free. Only when the mutual distance L
becomes comparable to 2d0 there is a small attraction, and at
that distance, the deviation of the morphology from that of two
undisturbed, tight dislocation dipoles is clearly visible.

Glide Motion of a Defect. In the previous section we have
considered the motion of a defect along the stripe direction. By
virtue of the translational invariance along the stripe, the
motion of an isolated defect along the stripe can occur in
infinitesimally small steps that do not incur a free energy
change. The situation is dramatically different for the motion of
a defect perpendicular to the stripe pattern because there is no
continuous translational symmetry in that direction but the
motion occurs in discrete jumps of the lamellar spacing.
Therefore, glide motion is a thermally activated process that in
soft matter systems like liquid crystals or copolymer materials is
strongly suppressed.43 This behavior is in accord with recent
experiments25 and the simulation data in Figure 1, where the
impact parameter, Δ, is conserved during defect motion. Here
we explicitly calculate the free energy barrier involved in the
glide of a dislocation perpendicular to the stripe.
This barrier of dislocation glide is of interest for two reasons:

(i) At the late stages of ordering, when the defect density is
small, glide motion is involved in defect annihilation. For
instance, the annihilation of a dislocation pair with opposite
Burgers vectors and Δ > 2d0

34 requires a sequence of
rearrangements that resembles the glide motion of one of the
dislocations. (ii) One could expect that free energy barriers of a
dislocation glide behave similar as the free energy barriers of
annihilating a metastable dislocation pair because both
processes involve the breaking and reconnecting of lamellar
domains. Such an agreement of the free energy barriers would
suggest that the breaking and reconnecting of lamellar domains
is the elementary process of defect annihilation and ordering
kinetics.
To facilitate the determination of the MFEP of the glide

process by three-dimensional SCFT calculations, we consider
an apposing dislocation pair with Δ = 0 (similar to Figure 4) as
starting morphology, α = 0, of the string. The distance between
the apposing dislocations along the stripe direction is L = Lx/2,
and we impose a mirror symmetry along the stripe direction, x

Figure 8. Excess free energy Δfd, of the defect morphology for various
system sizes, Ly, as a function of the dislocation distance, L. Ly = 12d0,
16d0, 24d0, and 48d0, varies from top to bottom. The solid lines
indicate a linear fit to the data at large L.

Figure 9.Magnitude of the force (i.e., the slope of the linear portion of
the excess free energy in Figure 8), acting on two dislocations, as a
function of Np/(Np + 1)2. The blue solid line indicates the simple
linear extrapolation.

Figure 10. Interaction, Δf, between four dislocation cores which have
pairwise condensed into tight dislocation dipoles for Ly = 8d0. The
distance, L, is indicated in one of the morphologies obtained by two-
dimensional SCFT calculations.
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system: dislocation pair, χN=30, non-patterned surface  
SCFT calculations, Lo=1.825Re, f=1/2 
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this regime, α < 0.7, the reaction coordinate correlates well with
the distance, L(t), between the defect cores in the direction
parallel to the stripes. Thus, a linear dependence indicates a

distance-independent force, K ∼ −(dΔF/dα)(dα/dL), between
the two apposing dislocations with opposite Burgers vectors.
When the defect cores approach each other, L ∼ d0, there is a
shoulder in the free energy profile but no barrier.
Morphological snapshots in the vicinity of the shoulder of
the free energy profile are depicted in Figure 4. The sequence
of structures and the details of the defect-annihilation process
nicely agree with the simulation snapshots of Figure 1,
suggesting that the MFEP of the EPD free energy functional,
G[W], accurately captures the defect-annihilation path.
In the second case with Δ = d0 (cf. Figure 5), the free energy

Δf also decreases linearly with the reaction coordinate for L0 −
L(t) ∼ α < 0.725, indicating a distance-independent attractive
force between the defects. Deviations from this linear behavior
occur for L ∼ d0, indicating a strong attraction and
thermodynamic driving force toward defect annihilation.
Again the sequence of morphologies along the string and the
absence of a free energy barrier nicely match the configuration
snapshots of the simulations.
Since the third case with Δ = 2d0, presented in Figure 6,

kinetically evolves into a metastable tight dislocation pair, we
choose this tight dislocation pair as the ending morphology of
the string. Note that this ending morphology at α = 1 with two
identical cores is not exactly the same as that of the last
simulation snapshot with two different cores (cf. Figure 1). The
former defect can be formed by connecting the A-end core with
the upper A-lamella in the latter morphology. The evolution
from this metastable tight dislocation pair into a defect-free
structure has been studied by SCFT18 and simulations.34

Similar to the previous case, the excess free energy linearly
decreases along the MFEP until the two dislocations meet at α
≈ 0.8. When the two dislocations pass by each other, there are
deviations from the linear relation between Δf and α that stem
from the distortion of the domains as the metastable state is
formed. The initial, linear behavior again indicates a constant
attractive force, and the MFEP successfully predicts the

Figure 4. (a) MFEPs for the removal of two apposing dislocations
with impact parameter, Δ = 0, for two different boundary conditions:
Ly = 8d0; i.e., the 8 outer lamellae adopt their equilibrium spacing
whereas the 9 inner lamellae are compressed (black cross symbols),
and Ly = 8.458d0, i.e., inner and outer lamellae are equally frustrated
(blue circle symbols). The red dashed line indicates a linear fit for the
linear part, α < 0.7, of the data in the first case. As the reaction
coordinate linearly correlates with the distance between the defect
cores, L (L = 8.212Re0, 4.398Re0, and 2.464Re0 for α = 0, 0,4, and 0.6),
a distance-independent attractive force, −dΔf/dL ≈ 0.498, is extracted.
(b1−b3) Three intermediate morphologies located at α = 0.725, α =
0.825, and α = 0.850, respectively. The inset shows the enlarged
MFEP in the second case.

Figure 5. (a) MFEP for the removal of a pair of dislocations with
impact parameter Δ = d0. The constant force extracted from the linear
part of the free energy profile is −Re0 dΔf/dL ≈ 0.495. Three typical
points, located at α = 0.725, α = 0.850, and α = 0.900 are indicated by
numbered arrows, and their isosurfaces of A density are plotted in
panels b1−b3.

Figure 6. (a) MFEP for the evolution of a pair of dislocations with
impact parameter Δ = 2d0. The constant force is −Re0 dΔf/dL ≈
0.490. (b1−b3) Three intermediate morphologies located at α = 0.500,
α = 0.850, and α = 0.925, respectively.
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this regime, α < 0.7, the reaction coordinate correlates well with
the distance, L(t), between the defect cores in the direction
parallel to the stripes. Thus, a linear dependence indicates a

distance-independent force, K ∼ −(dΔF/dα)(dα/dL), between
the two apposing dislocations with opposite Burgers vectors.
When the defect cores approach each other, L ∼ d0, there is a
shoulder in the free energy profile but no barrier.
Morphological snapshots in the vicinity of the shoulder of
the free energy profile are depicted in Figure 4. The sequence
of structures and the details of the defect-annihilation process
nicely agree with the simulation snapshots of Figure 1,
suggesting that the MFEP of the EPD free energy functional,
G[W], accurately captures the defect-annihilation path.
In the second case with Δ = d0 (cf. Figure 5), the free energy

Δf also decreases linearly with the reaction coordinate for L0 −
L(t) ∼ α < 0.725, indicating a distance-independent attractive
force between the defects. Deviations from this linear behavior
occur for L ∼ d0, indicating a strong attraction and
thermodynamic driving force toward defect annihilation.
Again the sequence of morphologies along the string and the
absence of a free energy barrier nicely match the configuration
snapshots of the simulations.
Since the third case with Δ = 2d0, presented in Figure 6,

kinetically evolves into a metastable tight dislocation pair, we
choose this tight dislocation pair as the ending morphology of
the string. Note that this ending morphology at α = 1 with two
identical cores is not exactly the same as that of the last
simulation snapshot with two different cores (cf. Figure 1). The
former defect can be formed by connecting the A-end core with
the upper A-lamella in the latter morphology. The evolution
from this metastable tight dislocation pair into a defect-free
structure has been studied by SCFT18 and simulations.34

Similar to the previous case, the excess free energy linearly
decreases along the MFEP until the two dislocations meet at α
≈ 0.8. When the two dislocations pass by each other, there are
deviations from the linear relation between Δf and α that stem
from the distortion of the domains as the metastable state is
formed. The initial, linear behavior again indicates a constant
attractive force, and the MFEP successfully predicts the

Figure 4. (a) MFEPs for the removal of two apposing dislocations
with impact parameter, Δ = 0, for two different boundary conditions:
Ly = 8d0; i.e., the 8 outer lamellae adopt their equilibrium spacing
whereas the 9 inner lamellae are compressed (black cross symbols),
and Ly = 8.458d0, i.e., inner and outer lamellae are equally frustrated
(blue circle symbols). The red dashed line indicates a linear fit for the
linear part, α < 0.7, of the data in the first case. As the reaction
coordinate linearly correlates with the distance between the defect
cores, L (L = 8.212Re0, 4.398Re0, and 2.464Re0 for α = 0, 0,4, and 0.6),
a distance-independent attractive force, −dΔf/dL ≈ 0.498, is extracted.
(b1−b3) Three intermediate morphologies located at α = 0.725, α =
0.825, and α = 0.850, respectively. The inset shows the enlarged
MFEP in the second case.

Figure 5. (a) MFEP for the removal of a pair of dislocations with
impact parameter Δ = d0. The constant force extracted from the linear
part of the free energy profile is −Re0 dΔf/dL ≈ 0.495. Three typical
points, located at α = 0.725, α = 0.850, and α = 0.900 are indicated by
numbered arrows, and their isosurfaces of A density are plotted in
panels b1−b3.

Figure 6. (a) MFEP for the evolution of a pair of dislocations with
impact parameter Δ = 2d0. The constant force is −Re0 dΔf/dL ≈
0.490. (b1−b3) Three intermediate morphologies located at α = 0.500,
α = 0.850, and α = 0.925, respectively.
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system: dislocation glide by half a period, χN=30, non-patterned surface  
self-consistent field theory (SCFT) calculations / string method F[W] 

 compression force also dictates dislocation glide 
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with respect to x = Lx/2. The dislocation pair corresponds to an
extra lamella domain for Lx/4 < x < 3Lx/4. In the initial stage, α
= 0, the dislocation cores are formed by an isolated B droplet
(i.e., B-core dislocation), whereas in the final stage, α = 1/2,
there are two apposing A-core dislocations. The ending
morphology, α = 1/2, of the string is obtained from the initial
one, α = 0, by breaking the upper misconnections of the two
dislocations as shown in Figure 11. Obviously, starting and
ending morphologies have equal free energies in a symmetric
block copolymer, and the interval 0 ≤ α ≤ 1/2 corresponds to
half a glide process.

The inner domain spacing, Lx/4 < x < 3Lx/4, is din = Ly/(Np
+ 1), and the outer periodicity is dout = Ly/Np with Np = 8. We
choose the perpendicular system size Ly = Np(Np + 1) d0/(Np +
1/2), asserting that the inner Np + 1 lamellae are compressed
and the outer Np lamellae are stretched so that their free
energies per chain in the stretched and compressed domains are
approximately equal. This choice results in a cancellation of the
boundary-induced forces (discussed in the section Interaction
of Two Apposing Dislocations).
The MFEP of the glide motion of the apposing dislocations

is presented in Figure 11. Its multiple free energy extrema are
indicated by the numbered arrows. The concomitant
intermediate morphologies along the MFEP are depicted in
panels b1−b3 of Figure 11, where we only show the lateral area
around the right dislocation core marked by the red frame in
the panel of the morphology at α = 0 and the top-left portion of
this area inside the blue box is further enlarged to show the
cross section of the broken A domain.
The first maximum along the MFEP, at α = 0.0625,

corresponds to triggering the rupture of the misconnected A
domain that participates in the Y-shaped junction. Similar to
the MFEP of annihilating a tight dislocation pair, this rupture of
the A domain is a truly three-dimensional process that starts at

one of the two confining, nonpreferential surfaces of the film.
The excess free energy arises from the creation of a wedge-
shaped A domain, where the unfavorably thin domain thickness
at the top of the film frustrates the packing of the
macromolecules and increases the area of the internal AB
interfaces (cf. Figure 11b1). We note that the corresponding
free energy barrier, Δf b ≈ 0.06, is slightly larger than the free
energy barrier, 0.05, encountered in breaking an A domain in
the course of annihilating a tight dislocation pair.18

This finding indicates that the barriers for breaking
connections are influenced by the local geometry and the
concomitant local distortion of the domains giving rise to
stretched or compressed domains and a local increase of the
internal AB interface area. As the breaking of the A domain
progresses from the top of the film toward the substrate, the
free energy is reduced and a new metastable state is formed at α
≈ 0.1094. In this metastable state, only the top half of the A
domain is broken, but the bottom portion of the Y-shaped
connection remains intact. This metastable structure has a lower
free energy than the isolated, quasi-two-dimensional disloca-
tion, α = 0. Indeed, such a partially broken A domain is also
observed as long-lived structure in the simulation of the
stagnation climb for t < 28τ; cf. bottom row of snapshots in
Figure 1.
The portion 0.3594 ≤ α ≤ 0.5 of the MFEP path

corresponds to breaking the bottom half of the A connection,
completing the transformation from B-core dislocation to an A-
core dislocation. By virtue of the compositional symmetry of
the copolymer and geometric symmetry of the intermediate
defect morphologies, the MFEP path is symmetric with respect
to α = 1/4.
The configurations along the MFEP at α = 0.1094, 1/4, and

0.3594 demonstrate that the large free energy barrier, Δf b ≈
0.3, at α = 0.25 is not associated with altering the domain
connectivity. In fact, the local morphologies at α = 0.1094 and
0.25 are very similar. Instead, the barrier at α = 1/4 arises from
a subtle but long-range distortion of the morphology. In the
initial B-core dislocation, α = 0, the system exhibits a mirror
symmetry with respect to the center of the isolated inner B
domain that forms the defect core. Likewise, the final A-core
dislocation, α = 1/2, is symmetric with respect to the center of
the isolated, inner A domain. Since the domain spacings, din and
dout, of the inner and outer lamellae differ, such a shift of the
symmetry axis by din/2 also requires that the relative
positioning of the inner and outer lamellae is altered. As
sketched in Figure 12, the upward shift of the symmetry axis by
din/2 between α = 0 and α = 1/2 is accompanied by a

Figure 11. (a) MFEP for the glide motion of a pair of apposing
dislocations. The system size in the normal direction is Ly = 8/(1 − 1/
18)d0. (b1−b3) Isosurface plots of A density of the portion around the
right dislocation inside the red box for three intermediate
morphologies located at α ≈ 0.0625, α ≈ 0.1094, and α = 0.2500
and their cleaved portion at the left-top showing the cross section of
the broken A domain.

Figure 12. Sketch of the symmetry axis of the B-core dislocation at α =
0 and the A-core dislocation at α = 1/2. The upward shift of the
symmetry axis by din/2 also imposes a shift of the inner and outer
domains with respect to each other by Δy = (dout − din)/2.
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with respect to x = Lx/2. The dislocation pair corresponds to an
extra lamella domain for Lx/4 < x < 3Lx/4. In the initial stage, α
= 0, the dislocation cores are formed by an isolated B droplet
(i.e., B-core dislocation), whereas in the final stage, α = 1/2,
there are two apposing A-core dislocations. The ending
morphology, α = 1/2, of the string is obtained from the initial
one, α = 0, by breaking the upper misconnections of the two
dislocations as shown in Figure 11. Obviously, starting and
ending morphologies have equal free energies in a symmetric
block copolymer, and the interval 0 ≤ α ≤ 1/2 corresponds to
half a glide process.

The inner domain spacing, Lx/4 < x < 3Lx/4, is din = Ly/(Np
+ 1), and the outer periodicity is dout = Ly/Np with Np = 8. We
choose the perpendicular system size Ly = Np(Np + 1) d0/(Np +
1/2), asserting that the inner Np + 1 lamellae are compressed
and the outer Np lamellae are stretched so that their free
energies per chain in the stretched and compressed domains are
approximately equal. This choice results in a cancellation of the
boundary-induced forces (discussed in the section Interaction
of Two Apposing Dislocations).
The MFEP of the glide motion of the apposing dislocations

is presented in Figure 11. Its multiple free energy extrema are
indicated by the numbered arrows. The concomitant
intermediate morphologies along the MFEP are depicted in
panels b1−b3 of Figure 11, where we only show the lateral area
around the right dislocation core marked by the red frame in
the panel of the morphology at α = 0 and the top-left portion of
this area inside the blue box is further enlarged to show the
cross section of the broken A domain.
The first maximum along the MFEP, at α = 0.0625,

corresponds to triggering the rupture of the misconnected A
domain that participates in the Y-shaped junction. Similar to
the MFEP of annihilating a tight dislocation pair, this rupture of
the A domain is a truly three-dimensional process that starts at

one of the two confining, nonpreferential surfaces of the film.
The excess free energy arises from the creation of a wedge-
shaped A domain, where the unfavorably thin domain thickness
at the top of the film frustrates the packing of the
macromolecules and increases the area of the internal AB
interfaces (cf. Figure 11b1). We note that the corresponding
free energy barrier, Δf b ≈ 0.06, is slightly larger than the free
energy barrier, 0.05, encountered in breaking an A domain in
the course of annihilating a tight dislocation pair.18

This finding indicates that the barriers for breaking
connections are influenced by the local geometry and the
concomitant local distortion of the domains giving rise to
stretched or compressed domains and a local increase of the
internal AB interface area. As the breaking of the A domain
progresses from the top of the film toward the substrate, the
free energy is reduced and a new metastable state is formed at α
≈ 0.1094. In this metastable state, only the top half of the A
domain is broken, but the bottom portion of the Y-shaped
connection remains intact. This metastable structure has a lower
free energy than the isolated, quasi-two-dimensional disloca-
tion, α = 0. Indeed, such a partially broken A domain is also
observed as long-lived structure in the simulation of the
stagnation climb for t < 28τ; cf. bottom row of snapshots in
Figure 1.
The portion 0.3594 ≤ α ≤ 0.5 of the MFEP path

corresponds to breaking the bottom half of the A connection,
completing the transformation from B-core dislocation to an A-
core dislocation. By virtue of the compositional symmetry of
the copolymer and geometric symmetry of the intermediate
defect morphologies, the MFEP path is symmetric with respect
to α = 1/4.
The configurations along the MFEP at α = 0.1094, 1/4, and

0.3594 demonstrate that the large free energy barrier, Δf b ≈
0.3, at α = 0.25 is not associated with altering the domain
connectivity. In fact, the local morphologies at α = 0.1094 and
0.25 are very similar. Instead, the barrier at α = 1/4 arises from
a subtle but long-range distortion of the morphology. In the
initial B-core dislocation, α = 0, the system exhibits a mirror
symmetry with respect to the center of the isolated inner B
domain that forms the defect core. Likewise, the final A-core
dislocation, α = 1/2, is symmetric with respect to the center of
the isolated, inner A domain. Since the domain spacings, din and
dout, of the inner and outer lamellae differ, such a shift of the
symmetry axis by din/2 also requires that the relative
positioning of the inner and outer lamellae is altered. As
sketched in Figure 12, the upward shift of the symmetry axis by
din/2 between α = 0 and α = 1/2 is accompanied by a

Figure 11. (a) MFEP for the glide motion of a pair of apposing
dislocations. The system size in the normal direction is Ly = 8/(1 − 1/
18)d0. (b1−b3) Isosurface plots of A density of the portion around the
right dislocation inside the red box for three intermediate
morphologies located at α ≈ 0.0625, α ≈ 0.1094, and α = 0.2500
and their cleaved portion at the left-top showing the cross section of
the broken A domain.

Figure 12. Sketch of the symmetry axis of the B-core dislocation at α =
0 and the A-core dislocation at α = 1/2. The upward shift of the
symmetry axis by din/2 also imposes a shift of the inner and outer
domains with respect to each other by Δy = (dout − din)/2.
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with respect to x = Lx/2. The dislocation pair corresponds to an
extra lamella domain for Lx/4 < x < 3Lx/4. In the initial stage, α
= 0, the dislocation cores are formed by an isolated B droplet
(i.e., B-core dislocation), whereas in the final stage, α = 1/2,
there are two apposing A-core dislocations. The ending
morphology, α = 1/2, of the string is obtained from the initial
one, α = 0, by breaking the upper misconnections of the two
dislocations as shown in Figure 11. Obviously, starting and
ending morphologies have equal free energies in a symmetric
block copolymer, and the interval 0 ≤ α ≤ 1/2 corresponds to
half a glide process.

The inner domain spacing, Lx/4 < x < 3Lx/4, is din = Ly/(Np
+ 1), and the outer periodicity is dout = Ly/Np with Np = 8. We
choose the perpendicular system size Ly = Np(Np + 1) d0/(Np +
1/2), asserting that the inner Np + 1 lamellae are compressed
and the outer Np lamellae are stretched so that their free
energies per chain in the stretched and compressed domains are
approximately equal. This choice results in a cancellation of the
boundary-induced forces (discussed in the section Interaction
of Two Apposing Dislocations).
The MFEP of the glide motion of the apposing dislocations

is presented in Figure 11. Its multiple free energy extrema are
indicated by the numbered arrows. The concomitant
intermediate morphologies along the MFEP are depicted in
panels b1−b3 of Figure 11, where we only show the lateral area
around the right dislocation core marked by the red frame in
the panel of the morphology at α = 0 and the top-left portion of
this area inside the blue box is further enlarged to show the
cross section of the broken A domain.
The first maximum along the MFEP, at α = 0.0625,

corresponds to triggering the rupture of the misconnected A
domain that participates in the Y-shaped junction. Similar to
the MFEP of annihilating a tight dislocation pair, this rupture of
the A domain is a truly three-dimensional process that starts at

one of the two confining, nonpreferential surfaces of the film.
The excess free energy arises from the creation of a wedge-
shaped A domain, where the unfavorably thin domain thickness
at the top of the film frustrates the packing of the
macromolecules and increases the area of the internal AB
interfaces (cf. Figure 11b1). We note that the corresponding
free energy barrier, Δf b ≈ 0.06, is slightly larger than the free
energy barrier, 0.05, encountered in breaking an A domain in
the course of annihilating a tight dislocation pair.18

This finding indicates that the barriers for breaking
connections are influenced by the local geometry and the
concomitant local distortion of the domains giving rise to
stretched or compressed domains and a local increase of the
internal AB interface area. As the breaking of the A domain
progresses from the top of the film toward the substrate, the
free energy is reduced and a new metastable state is formed at α
≈ 0.1094. In this metastable state, only the top half of the A
domain is broken, but the bottom portion of the Y-shaped
connection remains intact. This metastable structure has a lower
free energy than the isolated, quasi-two-dimensional disloca-
tion, α = 0. Indeed, such a partially broken A domain is also
observed as long-lived structure in the simulation of the
stagnation climb for t < 28τ; cf. bottom row of snapshots in
Figure 1.
The portion 0.3594 ≤ α ≤ 0.5 of the MFEP path

corresponds to breaking the bottom half of the A connection,
completing the transformation from B-core dislocation to an A-
core dislocation. By virtue of the compositional symmetry of
the copolymer and geometric symmetry of the intermediate
defect morphologies, the MFEP path is symmetric with respect
to α = 1/4.
The configurations along the MFEP at α = 0.1094, 1/4, and

0.3594 demonstrate that the large free energy barrier, Δf b ≈
0.3, at α = 0.25 is not associated with altering the domain
connectivity. In fact, the local morphologies at α = 0.1094 and
0.25 are very similar. Instead, the barrier at α = 1/4 arises from
a subtle but long-range distortion of the morphology. In the
initial B-core dislocation, α = 0, the system exhibits a mirror
symmetry with respect to the center of the isolated inner B
domain that forms the defect core. Likewise, the final A-core
dislocation, α = 1/2, is symmetric with respect to the center of
the isolated, inner A domain. Since the domain spacings, din and
dout, of the inner and outer lamellae differ, such a shift of the
symmetry axis by din/2 also requires that the relative
positioning of the inner and outer lamellae is altered. As
sketched in Figure 12, the upward shift of the symmetry axis by
din/2 between α = 0 and α = 1/2 is accompanied by a

Figure 11. (a) MFEP for the glide motion of a pair of apposing
dislocations. The system size in the normal direction is Ly = 8/(1 − 1/
18)d0. (b1−b3) Isosurface plots of A density of the portion around the
right dislocation inside the red box for three intermediate
morphologies located at α ≈ 0.0625, α ≈ 0.1094, and α = 0.2500
and their cleaved portion at the left-top showing the cross section of
the broken A domain.

Figure 12. Sketch of the symmetry axis of the B-core dislocation at α =
0 and the A-core dislocation at α = 1/2. The upward shift of the
symmetry axis by din/2 also imposes a shift of the inner and outer
domains with respect to each other by Δy = (dout − din)/2.

Macromolecules Article

DOI: 10.1021/acs.macromol.6b01088
Macromolecules 2016, 49, 6126−6138

6135

with respect to x = Lx/2. The dislocation pair corresponds to an
extra lamella domain for Lx/4 < x < 3Lx/4. In the initial stage, α
= 0, the dislocation cores are formed by an isolated B droplet
(i.e., B-core dislocation), whereas in the final stage, α = 1/2,
there are two apposing A-core dislocations. The ending
morphology, α = 1/2, of the string is obtained from the initial
one, α = 0, by breaking the upper misconnections of the two
dislocations as shown in Figure 11. Obviously, starting and
ending morphologies have equal free energies in a symmetric
block copolymer, and the interval 0 ≤ α ≤ 1/2 corresponds to
half a glide process.

The inner domain spacing, Lx/4 < x < 3Lx/4, is din = Ly/(Np
+ 1), and the outer periodicity is dout = Ly/Np with Np = 8. We
choose the perpendicular system size Ly = Np(Np + 1) d0/(Np +
1/2), asserting that the inner Np + 1 lamellae are compressed
and the outer Np lamellae are stretched so that their free
energies per chain in the stretched and compressed domains are
approximately equal. This choice results in a cancellation of the
boundary-induced forces (discussed in the section Interaction
of Two Apposing Dislocations).
The MFEP of the glide motion of the apposing dislocations

is presented in Figure 11. Its multiple free energy extrema are
indicated by the numbered arrows. The concomitant
intermediate morphologies along the MFEP are depicted in
panels b1−b3 of Figure 11, where we only show the lateral area
around the right dislocation core marked by the red frame in
the panel of the morphology at α = 0 and the top-left portion of
this area inside the blue box is further enlarged to show the
cross section of the broken A domain.
The first maximum along the MFEP, at α = 0.0625,

corresponds to triggering the rupture of the misconnected A
domain that participates in the Y-shaped junction. Similar to
the MFEP of annihilating a tight dislocation pair, this rupture of
the A domain is a truly three-dimensional process that starts at

one of the two confining, nonpreferential surfaces of the film.
The excess free energy arises from the creation of a wedge-
shaped A domain, where the unfavorably thin domain thickness
at the top of the film frustrates the packing of the
macromolecules and increases the area of the internal AB
interfaces (cf. Figure 11b1). We note that the corresponding
free energy barrier, Δf b ≈ 0.06, is slightly larger than the free
energy barrier, 0.05, encountered in breaking an A domain in
the course of annihilating a tight dislocation pair.18

This finding indicates that the barriers for breaking
connections are influenced by the local geometry and the
concomitant local distortion of the domains giving rise to
stretched or compressed domains and a local increase of the
internal AB interface area. As the breaking of the A domain
progresses from the top of the film toward the substrate, the
free energy is reduced and a new metastable state is formed at α
≈ 0.1094. In this metastable state, only the top half of the A
domain is broken, but the bottom portion of the Y-shaped
connection remains intact. This metastable structure has a lower
free energy than the isolated, quasi-two-dimensional disloca-
tion, α = 0. Indeed, such a partially broken A domain is also
observed as long-lived structure in the simulation of the
stagnation climb for t < 28τ; cf. bottom row of snapshots in
Figure 1.
The portion 0.3594 ≤ α ≤ 0.5 of the MFEP path

corresponds to breaking the bottom half of the A connection,
completing the transformation from B-core dislocation to an A-
core dislocation. By virtue of the compositional symmetry of
the copolymer and geometric symmetry of the intermediate
defect morphologies, the MFEP path is symmetric with respect
to α = 1/4.
The configurations along the MFEP at α = 0.1094, 1/4, and

0.3594 demonstrate that the large free energy barrier, Δf b ≈
0.3, at α = 0.25 is not associated with altering the domain
connectivity. In fact, the local morphologies at α = 0.1094 and
0.25 are very similar. Instead, the barrier at α = 1/4 arises from
a subtle but long-range distortion of the morphology. In the
initial B-core dislocation, α = 0, the system exhibits a mirror
symmetry with respect to the center of the isolated inner B
domain that forms the defect core. Likewise, the final A-core
dislocation, α = 1/2, is symmetric with respect to the center of
the isolated, inner A domain. Since the domain spacings, din and
dout, of the inner and outer lamellae differ, such a shift of the
symmetry axis by din/2 also requires that the relative
positioning of the inner and outer lamellae is altered. As
sketched in Figure 12, the upward shift of the symmetry axis by
din/2 between α = 0 and α = 1/2 is accompanied by a

Figure 11. (a) MFEP for the glide motion of a pair of apposing
dislocations. The system size in the normal direction is Ly = 8/(1 − 1/
18)d0. (b1−b3) Isosurface plots of A density of the portion around the
right dislocation inside the red box for three intermediate
morphologies located at α ≈ 0.0625, α ≈ 0.1094, and α = 0.2500
and their cleaved portion at the left-top showing the cross section of
the broken A domain.

Figure 12. Sketch of the symmetry axis of the B-core dislocation at α =
0 and the A-core dislocation at α = 1/2. The upward shift of the
symmetry axis by din/2 also imposes a shift of the inner and outer
domains with respect to each other by Δy = (dout − din)/2.
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(i.e., B-core dislocation), whereas in the final stage, α = 1/2,
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1/2), asserting that the inner Np + 1 lamellae are compressed
and the outer Np lamellae are stretched so that their free
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boundary-induced forces (discussed in the section Interaction
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the panel of the morphology at α = 0 and the top-left portion of
this area inside the blue box is further enlarged to show the
cross section of the broken A domain.
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domain that participates in the Y-shaped junction. Similar to
the MFEP of annihilating a tight dislocation pair, this rupture of
the A domain is a truly three-dimensional process that starts at

one of the two confining, nonpreferential surfaces of the film.
The excess free energy arises from the creation of a wedge-
shaped A domain, where the unfavorably thin domain thickness
at the top of the film frustrates the packing of the
macromolecules and increases the area of the internal AB
interfaces (cf. Figure 11b1). We note that the corresponding
free energy barrier, Δf b ≈ 0.06, is slightly larger than the free
energy barrier, 0.05, encountered in breaking an A domain in
the course of annihilating a tight dislocation pair.18

This finding indicates that the barriers for breaking
connections are influenced by the local geometry and the
concomitant local distortion of the domains giving rise to
stretched or compressed domains and a local increase of the
internal AB interface area. As the breaking of the A domain
progresses from the top of the film toward the substrate, the
free energy is reduced and a new metastable state is formed at α
≈ 0.1094. In this metastable state, only the top half of the A
domain is broken, but the bottom portion of the Y-shaped
connection remains intact. This metastable structure has a lower
free energy than the isolated, quasi-two-dimensional disloca-
tion, α = 0. Indeed, such a partially broken A domain is also
observed as long-lived structure in the simulation of the
stagnation climb for t < 28τ; cf. bottom row of snapshots in
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The portion 0.3594 ≤ α ≤ 0.5 of the MFEP path

corresponds to breaking the bottom half of the A connection,
completing the transformation from B-core dislocation to an A-
core dislocation. By virtue of the compositional symmetry of
the copolymer and geometric symmetry of the intermediate
defect morphologies, the MFEP path is symmetric with respect
to α = 1/4.
The configurations along the MFEP at α = 0.1094, 1/4, and

0.3594 demonstrate that the large free energy barrier, Δf b ≈
0.3, at α = 0.25 is not associated with altering the domain
connectivity. In fact, the local morphologies at α = 0.1094 and
0.25 are very similar. Instead, the barrier at α = 1/4 arises from
a subtle but long-range distortion of the morphology. In the
initial B-core dislocation, α = 0, the system exhibits a mirror
symmetry with respect to the center of the isolated inner B
domain that forms the defect core. Likewise, the final A-core
dislocation, α = 1/2, is symmetric with respect to the center of
the isolated, inner A domain. Since the domain spacings, din and
dout, of the inner and outer lamellae differ, such a shift of the
symmetry axis by din/2 also requires that the relative
positioning of the inner and outer lamellae is altered. As
sketched in Figure 12, the upward shift of the symmetry axis by
din/2 between α = 0 and α = 1/2 is accompanied by a

Figure 11. (a) MFEP for the glide motion of a pair of apposing
dislocations. The system size in the normal direction is Ly = 8/(1 − 1/
18)d0. (b1−b3) Isosurface plots of A density of the portion around the
right dislocation inside the red box for three intermediate
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the broken A domain.
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ABSTRACT: The thermodynamics of dislocations in thin films of
lamella-forming diblock copolymers and their climb and glide motions
are investigated using single-chain-in-mean-field (SCMF) simulations
and self-consistent field theory (SCFT) in conjunction with the string
method. The glide motion of a defect perpendicular to the stripe pattern
is characterized by large free energy barriers. The barriers not only stem
from altering the domain topology; an additional barrier arises from a
small-amplitude but long-range domain displacement. In contrast, the
climb motion along the stripes does not involve a free energy barrier in
accord with the continuous translational invariance along the stripe.
Thus, the perpendicular distance (“impact parameter”) between a pair
of defects is approximately conserved. Dislocation pairs with opposite
Burgers vectors attract each other and move toward each other
(“collide”) via climb motion. We find that the forces between apposing
defects significantly depend on system size, and the Peach−Koehler force in smectic structures only becomes accurate for
extremely large system sizes. Moreover, we observe in SCMF simulations that the defect annihilation time qualitatively and
nonmonotonously depends on the defects’ perpendicular distance and rationalize this finding by the collective kinetics along the
minimum free energy path (MFEP) and the single-chain dynamics in an inhomogeneous environment.

■ INTRODUCTION
Block copolymer self-assembly provides a useful platform for
the fabrication of various ordered nanostructures.1−4 Varying
molecular architectures including chain topology and number
of blocks or species, one can fabricate a vast diversity of
equilibrium structures for a wide spectrum of potential
applications.5−7 For applications in microelectronics, extremely
small defect densities on the order of 1 defect in 100 cm2 are
required, and chemically or topographical substrate patterns are
employed to guide the structure formation. This directed self-
assembly (DSA) of block copolymers offers a promising
bottom-up patterning technique that is currently regarded as
one of the most appealing next-generation lithography
techniques.3,8,9 On one hand, DSA aims to generate large-
scale, defect-free, geometrically simple and dense struc-
tures.10−13 On the other hand, DSA targets the design of
irregular, device-oriented structures, of which some structural
units resemble the geometry of defects.14−17 For both
application aspects it is critical to understand and control the
thermodynamics and kinetics of defect formation and
annihilation.18,19

One of the most widely studied patterns in DSA are lines and
spaces (L/S) that are formed by the self-assembly of AB block
copolymers in thin films yielding perpendicularly standing
lamellae10 or single-layer lying cylinders.20−22 These L/S
structures in the context of DSA have also been intensively

studied by self-consistent field theory (SCFT).9,18,23,24

Imperfections due to stripe misalignment or disconnections
result in the occurrence of topological defects in the quasi-two-
dimensional patterns similar to what is observed in smectic
liquid crystals.9 One prototypical defect type are dislocations.
These defects not only appear in two-dimensional lamellar
morphologies in thin films without patterned substrate, but
they are also observed in single-layer lying cylinders guided by
topographical trenches25 or free-standing lamellae guided by
periodic chemical patterns with imperfect guiding conditions.26

Thermodynamically, the (meta)stability of a defect is
characterized by its excess free energy, ΔFd, i.e., the free
energy difference with respect to the corresponding defect-free
morphology.18 The free energy of a defect dictates the
probability that a defect is created by thermal fluctuations in
a defect-free morphology. Except for the ultimate vicinity of the

transition to the disordered phase, Δ ∼ ̅F k TB 5 with kB
denoting Boltzmann’s constant and T temperature. The large
values of the invariant degree of polymerization, ̅ ∼ 1045 ,
prevent the spontaneous formation of defects. This finding
implies that experimentally observed defects cannot be
conceived as rare equilibrium fluctuations in a defect-free
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system: dislocation pair, χN=30, non-patterned surface  
particle simulations using Single-Chain-in-Mean-Field algorithm 

b) how fast does defect move: unconstraint vs evaporation    

t/τ = 0         112                 225                337               449                506 
4.5 106 SMC 

t/τ = 0          5.62               11.23             16.85             19.44             20 
1.7 105 SMC 

evaporation climb 

unconstraint climb 

both climbs remove defect, but evaporation climb is qualitatively slower  

no perpend.  
shift 

Lo perpend.  
shift 



L(t) 

unconstraint climb: 
viscous response to force 

constant velocity, 
linear decrease of L 

b) how fast does defect move: unconstraint vs evaporation    

Li, Müller, Macromolecules 49, 6126 (2016) 



L(t) 

evaporation climb: constant evaporation rate, r, of block from extra lamella 
                                                            exponential decrease of L 

unconstraint climb: 
viscous response to force 

constant velocity, 
linear decrease of L 

microscopic: blue blocks in extra half lamella “evaporate”, single blocks 
diffuse through red domain and must overcome free energy barrier ~ χNfkBT 
macroscopic:       aims at shrinking L, but does not efficiently translate into 
current, small Müller, Daoulas, Phys. Rev. Lett 107, 227801 (2011)  

b) how fast does defect move: unconstraint vs evaporation    



stagnation climb: motion arrests in a metastable configuration 
                               here: tight dislocation dipole 
 
defect annihilation is a thermally activated process      
      protracted annihilation time because 
 
questions:  
a)  what is the microscopic mechanism of defect annihilation? 
b)  what are the concomitant activation free energies (barriers)? 

       study Minimum Free-Energy Path (MFEP) by string method 
 

c) does defect motion/collision result in defect annihilation?  
    

t/τ = 0          5.62               11.23             16.85             28                  899 
5 106 SMC 

2Lo vertical  
shift 

2Lo vertical  
shift 
8 106 SMC 

Li, Nealey, de Pablo, Müller, Phys. Rev. Lett. 113, 168301 (2014) 



describe transformation path by a 
string of morphologies ms(r) with  
contour variable 0 ≤ s ≤ 1 
 
minimum free-energy path (MFEP) 
is defined by condition that the derivative 
perpendicular to the path vanishes 
 
improved string method: 
1.  evolve each morphology ms(r) as to minimize the free energy 

2.  re-parameterize the string to equal distance Δs (pointwise 3rd order spline) 

on-the-fly string method and improved string method  

E, Ren, Vanden-Eijnden, J. Chem. Phys. 126, 164103 (2007)  

2

bilayers (the 0th morphology) and a stalk-like structure
(the (Ns + 1)th morphology). The squared distance be-
tween two morphologies, m1(r) and m2(r), is defined by
s212 / R

dr [m1(r) �m2(r)]2. The MFEP is obtained by
demanding that the variation of F perpendicular to the
path vanishes,

r⇧F [ms] =

Z
dr ns(r)

⇥F [ms]

⇥m(r)
= 0 8s, (2)

with ns(r) = ms(r) � ⌥ms
⌥s

R
dr ms

@ms
@sR

dr ( @ms
@s )2

. The free energy

along the MFEP can be computed by,

dF [ms]

ds
=

Z
dr

�ms(r)

�s

⇥F [ms]

⇥m(r)
. (3)

The transition state, m⇥, is identified as the maximum
on the MFEP, dF [ms]

ds = 0. We use the improved string
method to find the MFEP [15, 16], which consists of
a two-step cycle: (i) F is minimized by evolving the
morphologies according to �ms(r) = �µ(r|ms)� with

µ(r|m) = �F [m]
�m(r) ; and (ii) ms(r) is re-parameterized via

a third-order spline at each point, r, to restore uniform
spacing of morphologies along the string. The driving
force for the string evolution is the derivative of F , which
is computed by restraining fluctuations of m(r) using an
umbrella potential [22, 23],

Hc[{r},mc]

kBT
=

H[{r}]
kBT

+

Z
dr

⌅

2
[mc(r)� m̂(r)]2 (4)

In the limit ⌅! 1, the free energy of the restrained sys-

tem, Fc[mc] ⌘ �kBT ln
R D[{r}] e�Hc[{r},mc]

kBT , converges
to the free-energy functional F [mc]. Di⇥erentiating with
respect to m(r), we obtain the chemical potential as the
restrained average of the microscopic order parameter,

⇥Fc[mc]

⇥mc(r)
= ⌅kBT [mc(r)� hm̂(r)ic] ⇤⇤⌅! µ(r|mc) (5)

The amphiphiles in our soft, coarse-grained model are
represented by chains composed of NA = 11 hydrophilic
(A) and NB = 21 hydrophobic (B) beads, and the sol-
vents by chains of N = 32 A beads. It has been shown
that this minimal model captures the universal prop-
erties of bilayer membranes [6, 7]. The Hamiltonian
H is comprised of bonded and non-bonded interactions
[24]. The bonded interactions take the form of a bead-

spring model, Hb
kBT =

PN�1
t=1

3(N�1)
2Re

2 [ri(t+ 1)� ri(t)]
2 ,

where Re is the end-to-end distance of the amphiphiles.
The non-bonded interactions are given by Hnb

kBT
 
N̄

=
R

dr
Re

[⇥0N
2 (�̂A+�̂B�1)2� ⇧0N

4 (�̂A��̂B)2], with �̂A(r) =
1
⌅0

P
i,s �A,i(t)⇥(r�ri(t)), here �A,i(t) = 1 if the segment

t on molecule i is hydrophilic and zero otherwise. We dis-
cretize space in cells of linear dimensions, �L = Re/6 in
order to compute the local densities and define the micro-
scopic order parameter by m̂(r) = �̂A � �̂B . ⇤0N limits

Figure 1: Contour plot of the string ms(r) in the midplane
of the system; every second configuration is depicted. Hy-
drophobic regions are colored red, hydrophilic regions are
shown in blue.

fluctuations of the total density from the reference value,
⌃0.  0N describes the repulsion between hydrophilic and
hydrophobic molecules. N̄ = (⌃0Re

3/N)2 characterizes
the molecular density. We use the values ⇤0N = 50,
 0N = 30, and

p
N̄ = 128, respectively. The strength of

the umbrella potential is set to ⌅ = 25
p
N̄/R3. Single-

Chain-in-Mean-Field simulations [24] in conjunction with
Smart Monte Carlo moves are used to sample the con-
figurations of the restrained particle-based model. It
takes ⌥0 = 28 400 Monte Carlo steps for an amphiphile
in a tensionless membrane to laterally di⇥use a distance
3.64Re = 2d0. In order to estimate the chemical poten-
tial according to Eq. (5), we average over 3.38⌥0 and then

we evolve the string with � = 0.005Re
3/kBT

p
N̄ .

Within the SCFT, the tension-free model membrane
is characterized by a thickness, d0 ⇡ 1.82Re, and
an interface tension between the hydrophobic and hy-
drophilic domains, �intd20/(kBT

p
N̄ ) ⇡ p

 0N/6(1 �
4 ln 2/ 0N)(d0/Re)2 ⇡ 6.72. These quantities are used to
identify length and energy scales. For biological lipids the
corresponding values are d0 ⇡ 3.6nm and �intd20/kBT ⇡
155. The molecular density in our coarse-grained model
is ⌃0d30/N =

p
N̄ (d0/Re)3 ⇡ 772, which is larger than

that of a lipid system (⇡ 35.8). The model system is
embedded in a box of size 3.3d0 ⇥ 2.2d0 ⇥ 2.2d0 with
periodic boundary conditions. The system contains two
bilayers of thickness 0.934d0 parallel to the y and z axis
and separated by a solvent layer of thickness 0.33d0. The
system is restrained by the umbrella potential, Eq. (4), in
a cylindrical volume of thickness 2.2d0 and radius 0.66d0.
The construction of the initial string started with its

two ends, which were taken as the order-parameter pro-
files of two apposed bilayers and the metastable stalk.
A third-order spline parameterization from the two ends
was then used to generate an initial string with Ns = 12.
In the early stages, we adjusted the ends to reduce fluctu-
ations [30] and doubled Ns to 24. After about 300⌥0 the
string of morphologies finally converged to the MFEP.
Fig. 1 presents contour plots of the order parameter in
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a third-order spline at each point, r, to restore uniform
spacing of morphologies along the string. The driving
force for the string evolution is the derivative of F , which
is computed by restraining fluctuations of m(r) using an
umbrella potential [22, 23],

Hc[{r},mc]

kBT
=

H[{r}]
kBT

+

Z
dr

⌅

2
[mc(r)� m̂(r)]2 (4)

In the limit ⌅! 1, the free energy of the restrained sys-

tem, Fc[mc] ⌘ �kBT ln
R D[{r}] e�Hc[{r},mc]

kBT , converges
to the free-energy functional F [mc]. Di⇥erentiating with
respect to m(r), we obtain the chemical potential as the
restrained average of the microscopic order parameter,

⇥Fc[mc]

⇥mc(r)
= ⌅kBT [mc(r)� hm̂(r)ic] ⇤⇤⌅! µ(r|mc) (5)

The amphiphiles in our soft, coarse-grained model are
represented by chains composed of NA = 11 hydrophilic
(A) and NB = 21 hydrophobic (B) beads, and the sol-
vents by chains of N = 32 A beads. It has been shown
that this minimal model captures the universal prop-
erties of bilayer membranes [6, 7]. The Hamiltonian
H is comprised of bonded and non-bonded interactions
[24]. The bonded interactions take the form of a bead-

spring model, Hb
kBT =

PN�1
t=1

3(N�1)
2Re

2 [ri(t+ 1)� ri(t)]
2 ,

where Re is the end-to-end distance of the amphiphiles.
The non-bonded interactions are given by Hnb

kBT
 
N̄

=
R

dr
Re

[⇥0N
2 (�̂A+�̂B�1)2� ⇧0N

4 (�̂A��̂B)2], with �̂A(r) =
1
⌅0

P
i,s �A,i(t)⇥(r�ri(t)), here �A,i(t) = 1 if the segment

t on molecule i is hydrophilic and zero otherwise. We dis-
cretize space in cells of linear dimensions, �L = Re/6 in
order to compute the local densities and define the micro-
scopic order parameter by m̂(r) = �̂A � �̂B . ⇤0N limits

Figure 1: Contour plot of the string ms(r) in the midplane
of the system; every second configuration is depicted. Hy-
drophobic regions are colored red, hydrophilic regions are
shown in blue.

fluctuations of the total density from the reference value,
⌃0.  0N describes the repulsion between hydrophilic and
hydrophobic molecules. N̄ = (⌃0Re

3/N)2 characterizes
the molecular density. We use the values ⇤0N = 50,
 0N = 30, and

p
N̄ = 128, respectively. The strength of

the umbrella potential is set to ⌅ = 25
p
N̄/R3. Single-

Chain-in-Mean-Field simulations [24] in conjunction with
Smart Monte Carlo moves are used to sample the con-
figurations of the restrained particle-based model. It
takes ⌥0 = 28 400 Monte Carlo steps for an amphiphile
in a tensionless membrane to laterally di⇥use a distance
3.64Re = 2d0. In order to estimate the chemical poten-
tial according to Eq. (5), we average over 3.38⌥0 and then

we evolve the string with � = 0.005Re
3/kBT

p
N̄ .

Within the SCFT, the tension-free model membrane
is characterized by a thickness, d0 ⇡ 1.82Re, and
an interface tension between the hydrophobic and hy-
drophilic domains, �intd20/(kBT

p
N̄ ) ⇡ p

 0N/6(1 �
4 ln 2/ 0N)(d0/Re)2 ⇡ 6.72. These quantities are used to
identify length and energy scales. For biological lipids the
corresponding values are d0 ⇡ 3.6nm and �intd20/kBT ⇡
155. The molecular density in our coarse-grained model
is ⌃0d30/N =

p
N̄ (d0/Re)3 ⇡ 772, which is larger than

that of a lipid system (⇡ 35.8). The model system is
embedded in a box of size 3.3d0 ⇥ 2.2d0 ⇥ 2.2d0 with
periodic boundary conditions. The system contains two
bilayers of thickness 0.934d0 parallel to the y and z axis
and separated by a solvent layer of thickness 0.33d0. The
system is restrained by the umbrella potential, Eq. (4), in
a cylindrical volume of thickness 2.2d0 and radius 0.66d0.
The construction of the initial string started with its

two ends, which were taken as the order-parameter pro-
files of two apposed bilayers and the metastable stalk.
A third-order spline parameterization from the two ends
was then used to generate an initial string with Ns = 12.
In the early stages, we adjusted the ends to reduce fluctu-
ations [30] and doubled Ns to 24. After about 300⌥0 the
string of morphologies finally converged to the MFEP.
Fig. 1 presents contour plots of the order parameter in

SCFT:   Cheng, Lin, E, Zhang, Shi, Phys. Rev. Lett. 104, 148301 (2010); Ting, Appelö, Wang, Phys. Rev. Lett. 106, 168101 (2011);  
             Li, Nealey, de Pablo, Müller, Phys. Rev. Lett. 113, 168301 (2014)  
particle simulations: Maragliano, Vanden-Eijnden. Chem. Phys. Lett., 446, 182 (2007); Miller, Vanden-Eijnden, Chandler, PNAS 104, 14559 
(2007); Müller, Smirnova, Marelli, Fuhrmans, Shi, Phys. Rev. Lett. 108, 228103 (2012); Müller, Sun, Phys. Rev. Lett. 111, 267801 (2013); 
Hur, Thapar, Ramirez-Hernandez, Khaira, Segal-Peretz, Rincon-Delgadillo, Li, Müller, Nealey, de Pablo, PNAS 112, 14144 (2015)  
interface models: Giacomello, Meloni, Müller, Casciola, J. Chem. Phys. 142, 104701 (2015), Ryham, Klotz, Yao, Cohen,  
               Biophys. J. 110, 1110 (2016)  



system: dislocation pair  
Minimum Free-Energy Path (MFEP) of F[W] obtained by SCFT theory 
 

 defect annihilation by lateral interface motion (2D)   

without guiding pattern, ΛN=0                   sequential breaking of connections 

2D mechanism (3D calculations) 

2D calculation for graphoepitaxy see Takahashi, et al, Macromolecules 45, 6253 (2012) 

defect removal = wetting of the aligned, registered grain 





 defect annihilation by perpendicular interface motion   
wetting-like mechanism 
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wetting of half lamellar  
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system: dislocation pair  
Minimum Free-Energy Path (MFEP) of F[W] obtained by SCFT theory 
 

 defect annihilation by perpendicular interface motion   

wetting-like mechanism 

without and with guiding pattern            sequential breaking of connections 
Li, Nealey, de Pablo, Müller, Phys. Rev. Lett. 113, 168301 (2014) 



system: dislocation pair, χN=20, 3×density multiplication, 3 L0 perp. shift 
Minimum Free-Energy Path (MFEP) obtained by particle simulation 
 

 defect annihilation for larger “impact parameter”   

Hur, Thapar, Ramírez-Hernández, 
Khaira, Segal-Peretz, Rincon-Delgadillo,  

Li, Müller, Nealey, de Pablo,  
PNAS 112 14144 (2015) 

Importantly, calculations for guiding stripes that deviate from
perfect commensurability reveal that the thermodynamic equi-
librium morphology is not affected, but that the kinetics of DSA
(i.e., the time required for defect removal) can vary consider-
ably. As explained in SI Text, we also considered the magnitude
of barrier heights as a function of the relative position of a
defect to the guiding stripes. Surprisingly, we found that when
one of the edge dislocations lies on the guiding stripe, it is
harder to remove the associated defect than when it is on
a neutral background (Fig. S6 and Table S2).

Dislocation Dipoles Separated by Multiple Lamellae. At this point, it
is instructive to note that, although the kinetic barriers for ad-
jacent dislocation dipoles are predicted to be small for low values
of χN, experimentally observed defect densities can, in some
cases, be large. The answer to this apparent contradiction is that
previous studies were limited to cases where the two edge dis-
locations were located next to each other. Generally, the initial
stages of structure formation lead to dislocation dipoles that are
apart in both the perpendicular and parallel directions to the
stripes. The strain energy of dislocations leads to an attractive
force between them, causing them to gradually approach each
other by a “climbing” or a “gliding” motion (36). Here, climbing
refers to an edge dislocation displacement along the stripes, and
perpendicular to the Burgers vector; gliding describes a defect
movement perpendicular to the internal AB interfaces. Unlike
the defects in solid crystals, in which climbing by the emission or
absorption of vacancies is more difficult, defects in block co-
polymer thin films are expected to exhibit a slower gliding mo-
tion, because gliding necessarily involves interdiffusion across
domain boundaries and interface destruction, a highly unfavorable
process due to the enthalpic penalty for block mixing mentioned
earlier. Climbing motion, on the other hand, can be achieved via
relatively inexpensive chain displacements parallel to the inter-
faces. These views are confirmed by recent experiments by Tong
and Sibener, who monitored the dynamics of layered structures
of cylinder-forming block copolymers confined in a channel (36).
In response to the strain field-mediated interactions, disloca-

tion cores with opposite Burgers vectors attract each other and
climb along the stripes until they reach a metastable, force-free
configuration. Here we therefore focus on gliding motion out of
this metastable configuration, and examine how barrier heights
vary for each of the peaks as the perpendicular distance between
edge dislocations varies.
Fig. 6 presents the MFEP of dislocation dipoles separated by

two lamellar periods at χN = 20. As shown in the representative
configurations of the initial defect configuration, two edge dis-
locations are located right next to the A-attractive guiding stripes,
and intermediate curved domains are located on top of the neutral
domain. Along the defect annihilation path, there is a small first
barrier that corresponds to bridge formation of the bright B blocks,
followed by a downhill descent corresponding to the growth of the
bridge (increasing the wetting layer of B). Another small barrier
and a downhill section follow as the bridge of the B block on the
other side forms and grows. Approximately at the reaction co-
ordinate α = 0.3, the system reaches a 3D metastable structure.
Beyond that structure, the free energy rises again. This uphill
process is associated with the formation of the B bridge, and is
followed by transition states with a large barrier height. This first
transition state has a slight connection of the red A domain,
which occurs after the B bridge increases on one side, as shown
in the fifth morphology of Fig. 6B. When the connected A do-
main vanishes completely, the B core edge dislocation is transferred
into an A core edge dislocation. A similar transition occurs on the
other side, and eventually results in a dislocation dipole with a re-
duced distance of L0. The morphology of this dislocation dipole is
the same as that of the initial defect structure (tight dislocation
dipole) studied in MFEP for Edge Dislocation Dipole, and the

subsequent portion of the MFEP is the same as the black curve in
Fig. S4 for χN= 20. We would like to emphasize that, although the
barrier height for annihilation of dislocation dipoles that are ad-
jacent to each other is predicted to be very small, if the two edges
of a dislocation pair are initially apart, the system must first cross
transition states having much larger barrier heights, on the order
of 15  kBT, even for materials having a small χN = 20. This is
more than 3 times larger than the barrier height for dislocation
dipoles that are adjacent to each other.
Note, additionally, that the kinetic pathway for defect removal

consists of multiple barriers and metastable states and that the
probability of a metastable state going back in the direction toward
the original defect state is not negligible, i.e., the system performs
a stochastic jump process between the metastable states.
These observations help explain the higher defect density that

is sometimes observed in experiments, and emphasizes that, for
DSA, it is important to know how barrier height ΔFb varies as a
function of the distance between dislocations. Previous experi-
mental studies (36, 37) that attempted to fit data using a uniform
diffusion, regardless of the distance between dislocation dipoles,
were unlikely to capture the diffusion of moving defects.

Conclusions
We have examined the MFEP for defect annihilation of dislo-
cation pairs in lamellar structures of block copolymer thin films,
with an emphasis on industrially relevant DSA strategies that
rely on a chemically patterned substrate and density multiplica-
tion. Multiple metastable states, separated by free energy bar-
riers, arise along the MFEP. The largest barrier height, ΔFb, for
a tight dislocation dipole corresponds to the formation of a first
transition state in which a molecular bridge connecting the edge
and the nearest curved domain is initiated. From a Kramers-like
approach, the transition time is expected to be exponentially
proportional to ΔFb. This will therefore be the most time-con-
suming step along the path. MFEP and diffusive MC simulations,
which can predict the evolution of morphologies, show that once
a bridge is formed, it can grow rapidly as additional molecules

Fig. 6. (A) MFEP between a dislocation dipole separated by two periods and
defect-free lamellar structures . The x axis represents the reaction coordinate
along the pathway, α∈ ½0,1". The y axis is free energy difference with the
starting morphology (defective) in units of kBT. (B) Morphologies along the
MFEP in A. All of the images correspond to bottom views.
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Importantly, calculations for guiding stripes that deviate from
perfect commensurability reveal that the thermodynamic equi-
librium morphology is not affected, but that the kinetics of DSA
(i.e., the time required for defect removal) can vary consider-
ably. As explained in SI Text, we also considered the magnitude
of barrier heights as a function of the relative position of a
defect to the guiding stripes. Surprisingly, we found that when
one of the edge dislocations lies on the guiding stripe, it is
harder to remove the associated defect than when it is on
a neutral background (Fig. S6 and Table S2).

Dislocation Dipoles Separated by Multiple Lamellae. At this point, it
is instructive to note that, although the kinetic barriers for ad-
jacent dislocation dipoles are predicted to be small for low values
of χN, experimentally observed defect densities can, in some
cases, be large. The answer to this apparent contradiction is that
previous studies were limited to cases where the two edge dis-
locations were located next to each other. Generally, the initial
stages of structure formation lead to dislocation dipoles that are
apart in both the perpendicular and parallel directions to the
stripes. The strain energy of dislocations leads to an attractive
force between them, causing them to gradually approach each
other by a “climbing” or a “gliding” motion (36). Here, climbing
refers to an edge dislocation displacement along the stripes, and
perpendicular to the Burgers vector; gliding describes a defect
movement perpendicular to the internal AB interfaces. Unlike
the defects in solid crystals, in which climbing by the emission or
absorption of vacancies is more difficult, defects in block co-
polymer thin films are expected to exhibit a slower gliding mo-
tion, because gliding necessarily involves interdiffusion across
domain boundaries and interface destruction, a highly unfavorable
process due to the enthalpic penalty for block mixing mentioned
earlier. Climbing motion, on the other hand, can be achieved via
relatively inexpensive chain displacements parallel to the inter-
faces. These views are confirmed by recent experiments by Tong
and Sibener, who monitored the dynamics of layered structures
of cylinder-forming block copolymers confined in a channel (36).
In response to the strain field-mediated interactions, disloca-

tion cores with opposite Burgers vectors attract each other and
climb along the stripes until they reach a metastable, force-free
configuration. Here we therefore focus on gliding motion out of
this metastable configuration, and examine how barrier heights
vary for each of the peaks as the perpendicular distance between
edge dislocations varies.
Fig. 6 presents the MFEP of dislocation dipoles separated by

two lamellar periods at χN = 20. As shown in the representative
configurations of the initial defect configuration, two edge dis-
locations are located right next to the A-attractive guiding stripes,
and intermediate curved domains are located on top of the neutral
domain. Along the defect annihilation path, there is a small first
barrier that corresponds to bridge formation of the bright B blocks,
followed by a downhill descent corresponding to the growth of the
bridge (increasing the wetting layer of B). Another small barrier
and a downhill section follow as the bridge of the B block on the
other side forms and grows. Approximately at the reaction co-
ordinate α = 0.3, the system reaches a 3D metastable structure.
Beyond that structure, the free energy rises again. This uphill
process is associated with the formation of the B bridge, and is
followed by transition states with a large barrier height. This first
transition state has a slight connection of the red A domain,
which occurs after the B bridge increases on one side, as shown
in the fifth morphology of Fig. 6B. When the connected A do-
main vanishes completely, the B core edge dislocation is transferred
into an A core edge dislocation. A similar transition occurs on the
other side, and eventually results in a dislocation dipole with a re-
duced distance of L0. The morphology of this dislocation dipole is
the same as that of the initial defect structure (tight dislocation
dipole) studied in MFEP for Edge Dislocation Dipole, and the

subsequent portion of the MFEP is the same as the black curve in
Fig. S4 for χN= 20. We would like to emphasize that, although the
barrier height for annihilation of dislocation dipoles that are ad-
jacent to each other is predicted to be very small, if the two edges
of a dislocation pair are initially apart, the system must first cross
transition states having much larger barrier heights, on the order
of 15  kBT, even for materials having a small χN = 20. This is
more than 3 times larger than the barrier height for dislocation
dipoles that are adjacent to each other.
Note, additionally, that the kinetic pathway for defect removal

consists of multiple barriers and metastable states and that the
probability of a metastable state going back in the direction toward
the original defect state is not negligible, i.e., the system performs
a stochastic jump process between the metastable states.
These observations help explain the higher defect density that

is sometimes observed in experiments, and emphasizes that, for
DSA, it is important to know how barrier height ΔFb varies as a
function of the distance between dislocations. Previous experi-
mental studies (36, 37) that attempted to fit data using a uniform
diffusion, regardless of the distance between dislocation dipoles,
were unlikely to capture the diffusion of moving defects.

Conclusions
We have examined the MFEP for defect annihilation of dislo-
cation pairs in lamellar structures of block copolymer thin films,
with an emphasis on industrially relevant DSA strategies that
rely on a chemically patterned substrate and density multiplica-
tion. Multiple metastable states, separated by free energy bar-
riers, arise along the MFEP. The largest barrier height, ΔFb, for
a tight dislocation dipole corresponds to the formation of a first
transition state in which a molecular bridge connecting the edge
and the nearest curved domain is initiated. From a Kramers-like
approach, the transition time is expected to be exponentially
proportional to ΔFb. This will therefore be the most time-con-
suming step along the path. MFEP and diffusive MC simulations,
which can predict the evolution of morphologies, show that once
a bridge is formed, it can grow rapidly as additional molecules

Fig. 6. (A) MFEP between a dislocation dipole separated by two periods and
defect-free lamellar structures . The x axis represents the reaction coordinate
along the pathway, α∈ ½0,1". The y axis is free energy difference with the
starting morphology (defective) in units of kBT. (B) Morphologies along the
MFEP in A. All of the images correspond to bottom views.
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•  defect annihilation involves 
dislocation glide and breaking 
of connections via a wetting- 
like mechanism 
       multiple barriers 

•  pathway and barrier depends 
on relative position of defects 
cores with respect to guiding 
pattern 



system: dislocation pair  
Minimum Free-Energy Path (MFEP) of F[W] obtained by SCFT theory 
 

 defect removal is enhanced close to ODT   

there exists a region of χN 
where 
but 
i.e. defects have a high free energy 
(not formed by thermal fluctuations)  
and are not metastable 
(spontaneously decay)  

Li, Nealey, de Pablo, Müller, Phys. Rev. Lett. 113, 168301 (2014) 



system: dislocation pair  
particle simulations using Single-Chain-in-Mean-Field algorithm 
 
 
 
 
 
 
observation at χN=30: distance between dislocations decreases in time 
                                     collide and form a metastable tight dislocation dipole 
quench from χN=30 to 20 renders tight dislocation dipole unstable 
 

 process-directed self-assembly: defect removal at low χN   

t/τ = 0          5.62               11.23             16.85             28                  1000 
5 106 SMC 

stagnation climb – metastable dipole 

t/τ = 0           0.11               4.5                 5.4 
337 τ

8 106 SMC 



χN=30    111τ χN=20 (111+3.3)τ χN=20 (111+18.9)τ

L/S pattern – no density multiplication 
eliminate well-formed metastable  
disclinationdefects (111τ@χN=30) 
by reducing χN=30è20 

        defect are eliminated  
        but time scale is longer than ordering from disordered state at χN=20  

 process-directed self-assembly: defect removal at low χN 
χN=30     1.1τ χN=30     3.3τ χN=30    111τ



summary 
•  excess free-energy of defects is prohibitive ΔF ~O(100kBT): 

defects will not spontaneously form but arise in course of structure formation 
•  local smectic-A geometry controls defect motion and collision  

deviation from Peach-Koehler force due to boundary/finite-size effects 
•  defect removal fast at intermediate segregations, χN�����

process window increases with preference of guiding pattern     
process-directed self-assembly: tailor free energy landscape of self-assembly 
by temporal control of thermodynamic state variable, e.g., χN or solvent 
 
W.H. Li, U. Welling, J.C. Orozco Rey, S.M. Hur, P.F. Nealey, J.J. de Pablo 
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