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Overview Metastability & Computation

Metastability

V (x)

State A

State B

State C

Huange et al., 2011

Real materials (metals, crystals, proteins) contain defects

Atomic, vibrational, time scale: 10−15 s

Time scale for transitions of defects: 10−9 − 10−6 s

Metastable States

Transitions amongst Metastable States are Rare Events

Goal – Predictive simulation of metastable systems
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Overview Metastability & Computation

Computational Costs of Classical Molecular Dynamics

Overdamped Langevin model:

dXt = −∇V (Xt)dt +
√

2β−1dWt , Xt : [0,∞)→ R3·N (1)

Want to resolve 10−15 s time scale

Time step: ∆t = 10−16 s

Assume typical transition time ≈ 10−6 s

1010 time steps

Each step takes ≈ 10−6 s of wall clock time per atom

≈ 2.5 hr. per atom

10−6 s of a 100 atom system ≈ 10 days of for direct simulation
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Overview Metastability & Computation

Methods for Overcoming the Scale Separation
Getting from 10−15 s to 10−6 s

V (x)

State A State B State C

Accelerated Molecular Dynamics (Voter...)

(Adaptive) Kinetic Monte Carlo (Henkelman,...)

ART (Mousseau)

Markov State Models (Vanden-Eijden, Schütte...)

Milestoning (Elbert,...)

Phase Field Crystal (PFC) (Elder, Voorhees,...)

Others...
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Overview DMD Models

Diffusive Molecular Dynamics (DMD)
Sarkar (2011), Phillpot (1994), Perez & Lewis (2006)

xi

Classical MD

xi, si xj , sj

DMD

Key Idea: Assign, at each atomic site i , likelihood of occupancy by
one of two species, si ∈ (−1, 1)

si ∼ 1⇔ High likelihood of species A at site i

si ∼ −1⇔ High likelihood of species B at site i
(2)

Evolve si under a deterministic flow.

Allow lattice to quasistatically evolve as composition rearranges

Simpson (Drexel) DMD–UBC 2017 July 31, 2017 6 / 45



Overview DMD Models

Diffusive Molecular Dynamics (DMD)
Sarkar (2011), Phillpot (1994), Perez & Lewis (2006)

xi

Classical MD

xi, si xj , sj

DMD

Key Idea: Assign, at each atomic site i , likelihood of occupancy by
one of two species, si ∈ (−1, 1)

si ∼ 1⇔ High likelihood of species A at site i

si ∼ −1⇔ High likelihood of species B at site i
(2)

Evolve si under a deterministic flow.

Allow lattice to quasistatically evolve as composition rearranges

Simpson (Drexel) DMD–UBC 2017 July 31, 2017 6 / 45



Overview DMD Models

DMD Computations
Sintering of Cu – Elemental Material

Li et al. 2011
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Overview DMD Models

DMD Computations
Binary Alloy Segregation in Al-Mg

Dontsova et al. 2014

Simpson (Drexel) DMD–UBC 2017 July 31, 2017 8 / 45



Overview DMD Models

DMD Computations
Binary Alloy Aggregation near Edge Dislocations in Al-Mg

Dontsova et al. 2015
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Overview DMD Models

DMD Dynamics

Key elements for running DMD

A “free energy”, F = F(X, k, s), with mean atomic site positions X
and harmonic constants k

Given the composition, minimize F over (X, k) – quasistatic evolution
of the lattice

With minimizing (X, k), evolve si :

ṡi =
∑
j∈Ni

kij

(
∂F
∂sj
− ∂F
∂si

)
(3)
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Overview Challenges & Goals

Mathematical Challenges for DMD

1 Constructing & Evlauating the Free Energy

2 Constructing & Constraining the Evolution Equation – Form of flow
and values of coefficients

3 Relating DMD to MD
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Overview Challenges & Goals

Main Results

Spin-Diffusion model – Couple a diffusion (overdamped Langevin) to
spin exchange (Ising)

Using:

Time Scale Separation
Quasistationary Distributions
Low Temperature Approximations
Mean field Approximations

we recover DMD type dynamics
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Framework & Background

1 Overview

2 Framework & Background
Common Structure
DMD Model

3 Spin-Diffusion

4 Simulations

5 Summary & Acknowledgements
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Framework & Background Common Structure

State Spaces and Potentials

Binary Alloy State Space

x = (x1, x2, x3, . . . , xN), xi ∈ D ⊂ Rd

σ = (σ1, σ2, . . . , σN), σi ∈ {±1}
(4)

Pair Potential

V (x,σ) =
∑
i<j

φσi ,σj (|xi − xj |) (5)

Generalizes to more sophisticated potentials (i.e., EAM)
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Framework & Background Common Structure

Aside – Elemental Material (Atoms & Vacancies)

Earliest DMD works were for elemental materials: Single Species &
Vacancies:

x = (x1, x2, x3, . . . , xN), xi ∈ D ⊂ Rd (6)

a = (a1, a2, . . . , aN), ai ∈ {0, 1} (7)

V (x, a) =
∑
i<j

aiajφ(|xi − xj |) (8)

Framework could also be extended to multicomponent systems
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Framework & Background Common Structure

Ensembles

Generalized Ensemble – Spin-Diffusion

µ(dx,σ) = Z−1e−βV (x,σ)dx, Z =
∑ ′

∫
e−βV (x,σ)dx (9)

∑
σi = M constrains state space

Alternative Ensemble – DMD

ν(dx,σ) = Z−1
ν e−βV (x,σ)+βλ·σdx, Zν =

∑∫
e−βV (x,σ)+βλ·σdx (10)

No constraint on state space

λi chosen such that Eν [σi ] = si ,
∑

si = M
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Framework & Background DMD Model

True Free Energy

Working in ν ensemble,

Fν = −β−1 lnZν + λ · s, Zν =
∑∫

e−βV (x,σ)+βλ·σdx (11)

For harmonic potential:

Ṽ (x,σ; X, k) =
∑
i

ki
2
|xi − Xi |2 (12)

then

Fν̃ = β−1
∑
i

1 + si
2

ln
1 + si

2
+

1− si
2

ln
1− si

2
+
∑
i

d

2
ln
βki
2π

(13)
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Framework & Background DMD Model

Free Energy Approximation
Variational Gaussian (VG), LeSar et al. (1989, 1990)

Key Idea: Approximate the true DMD free energy F by F , a least
upper bound, and use ∇sF to drive the dynamics

Approximate Fν with F by finding the best fit “Gaussian” ν̃ for ν
with respect to Relative Entropy:

R(ν̃||ν) =

{
Eν [log d ν̃

dν ] ν̃ � ν,

+∞ otherwise
(14)

Corresponds to minimization over parameters (X, k)

F = Eν̃ [V ] + β−1
N∑
i=1

1 + si
2

log
1 + si

2
+

1− si
2

log
1− si

2

+
3

2

(
log

βki
2π
− 1

) (15)
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Framework & Background DMD Model

Aside – Why Relative Entropy?

For classical problem, let V and Ṽ be two different potentials for the
same system (i.e., N atoms in a box Ω). Gibbs distributions are:

ν(dx) = Z−1e−βV (x)dx, ν̃(dx) = Z̃−1e−βṼ (x)dx, (16)

then
R(ν̃||ν) = βEν̃ [(V − Ṽ )]− log Z̃ + logZ (17)

Non-negativity of R ⇔ Gibbs-Bogoliubov inequality:

−β−1 logZ︸ ︷︷ ︸
Free Energy for V

≤ Eν̃ [(V − Ṽ )]− β−1 log Z̃︸ ︷︷ ︸
Upper Bound

(18)

Generalizes to extended state space

R(ν̃||ν) vs. R(ν||ν̃)
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≤ Eν̃ [(V − Ṽ )]− β−1 log Z̃︸ ︷︷ ︸
Upper Bound

(18)

Generalizes to extended state space

R(ν̃||ν) vs. R(ν||ν̃)

Simpson (Drexel) DMD–UBC 2017 July 31, 2017 19 / 45



Framework & Background DMD Model

Aside – Why Relative Entropy?
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Framework & Background DMD Model

DMD Dynamics – Fast/Slow Processes

Minimize F over harmonic parameters (X, k)

F = Eν̃ [V ] + β−1
N∑
i=1

1 + si
2

log
si + 1

2
+

1− si
2

log
1− si

2

+
d

2

(
log

βki
2π
− 1

) (19)

Free Energy Gradients – conserves mass, reduces free energy

ṡi =
∑
j∈Ni

kij

(
∂F
∂sj
− ∂F
∂si

)
“Master Equation”

ṡi =
∑
j∈Ni

(1 + sj)(1− si )Γj→i − (1 + si )(1− sj)Γi→j (20)
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Framework & Background DMD Model

Outstanding Questions

What motivates the form of the dynamics?

What is the relationship between DMD and MD?

Simpson (Drexel) DMD–UBC 2017 July 31, 2017 21 / 45



Spin-Diffusion

1 Overview

2 Framework & Background

3 Spin-Diffusion
Scale Separation
Further Approximations
Comparison with DMD

4 Simulations

5 Summary & Acknowledgements
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Spin-Diffusion

Spin-Diffusion Model

State Space σ ∈ {±1}N , x ∈ Rd ·N

Diffusion Process Given σ, integrate

dx(t) = −∇V (x(t),σ)dt +
√

2β−1dW(t) (21)

Spin Exchange Process Given x, swap σ → σ′ with rates satisfying
detailed balance:

r(σ → σ′; x)e−βV (x,σ) = r(σ′ → σ; x)e−βV (x,σ′) (22)

Joint Process Lε = ε−1Lx + Lσ; ε reflects a scale separation

Equilibrium Since e−βV (x,σ) is invariant for each process, it is invariant
for the joint process and preserves

∑
σi = M
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Spin-Diffusion

Spin-Diffusion and MD

Assume V (x,σ) is invariant to simultaneous change of labels in both
arguments: For any admissible σ?

Z =
∑
σ

′
∫

exp(−βV (x,σ))dx =

(
N

NA

)∫
exp(−βV (x,σ?))dx.

(23)
where NA + NB = N and NA − NB = M

Spin-diffusion can be used to estimate e−βV (x,σ?) averaged
observables also invariant to permutation (i.e. internal energy)
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Spin-Diffusion Scale Separation

Scale Separation & Metastability

Assume V (x,σ) has a finite number of minima and associated basins
of attraction. Then:

Rd ·N = ∪n`=1D`(σ), D`(σ) ∩ D`′(σ) = ∅ if ` 6= `′ (24)

Hence,

Z =
∑
σ

′
n∑
`=1

∫
D`(σ)

exp(−βV (x,σ))dx =
∑
σ

′
n∑
`=1

Z`(σ) (25)

Time for diffusion to transit amongst D`(σ) at fixed σ is long relative
to time to sample D`(σ) (metastable states) – approximate using
Quasistationary distributions (QSDs):

Z =
∑
σ

′
n∑
`=1

Z`(σ) ≈
∑
σ

′
n∑
`=1

Ž`(σ), (26)
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Spin-Diffusion Scale Separation

QSDs for Diffusions

For just a diffusion (for now):

dx(t) = −∇V (x(t))dt +
√

2β−1dW(t)

and let D be a subset of the state space (i.e., a basin of attraction)
with x(0) ∈ D:

T = inf {t ≥ 0 | x(t) /∈ D}
µ̌(dx) = lim

t→∞
P(x(t) ∈ dx | T > t)

QSD µ̌ is the distribution of the diffusion, conditioned on never
leaving D.

For spin-diffusion, given a set D`(σ) at fixed σ, QSD µ̌`(• | σ):

µ̌`(• | σ) = lim
t→∞

P(x(t) ∈ • | T > t) (27)
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Spin-Diffusion Scale Separation

QSDs for Diffusions, Continued

Generator of the diffusion is

L = −∇xV · ∇x + β−1∆x

Conditioning on not leaving D corresponds to putting zero Dirichlet
boundary conditions on L

Let λi be the eigenvalues of -L:

If x(0) ∼ µ̌, then λ−1
1 is mean first exit time

Starting from an arbitrary initial condition, time scale to relax to QSD
is (λ2 − λ1)−1

Measure of metastability:

Relaxation Time

First Exit Time
∼ λ1

λ2 − λ1
(28)
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Spin-Diffusion Scale Separation

Comparison of Distributions for Diffusions

µ̌(dx) = lim
t→∞

P(x(t) ∈ dx | T > t)

Z−1e−βV (x)1D(x)dx

Z̃−1e−β
k
2
|x−X|21D(x)dx

As β →∞, they all agree
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Spin-Diffusion Scale Separation
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Spin-Diffusion Scale Separation

QSD Scale Separation for Spin-Diffusion

Assume: There exists 0 < ε� 1 such that for all D`(σ)

ε ∼ λ1(σ, `)

λ2(σ, `)− λ1(σ, `)
(29)

QSD Idealization of Spin-Diffusion:

Diffusions will take so long to exit D`(σ), approximate this as infinity
Conditioned diffusions explores within each basin
Spin-Exchange explores across the basins

Precisely motivates ε in Ľε = ε−1Ľx + Ľσ,` and reaction rates in
spin-exchange are O(1) time scale.
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Spin-Diffusion Scale Separation

QSD Scale Separation for Spin-Diffusion, Continued
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Removes ambiguity of type of transitions – Did this composition arise
from a diffusion or a spin-exchange?

In our model, intrabasin motion is handled by the diffusion, interbasin
transits are handled by the spin exchange
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Spin-Diffusion Scale Separation

Expansion and Averaged Dynamics

Backwards Kolmogorov: ∂tv = Ľεv , v = v0 + εv1 + . . .,

Leading Order: ∂tv0 = Eµ̌`(•|σ)[Ľσ,`]v0, (30)

jump process with x-averaged (finite temperature) reaction rates

By virtue of QSD, jump process is (σ, `)→ (σ′, `′):

v̇0 =
∑

(σ′,`′)

Eµ̌`(•|σ)[r((σ, `)→ (σ′, `′); x)](v0(σ′, `′, t)− v0(σ, `, t))

(31)
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Spin-Diffusion Further Approximations

Low Temperature Approximation

For rates to be tractable, approximate QSD as restricted Boltzmann
(see Gesú et al, 2016)

µ̌`(dx | σ) = Ž`(σ)−1ϕ1(x;σ, `)e−βV (x,σ)dx

β→∞
≈ Ž`(σ)−11D`(σ)e

−βV (x,σ)dx.
(32)

Then

r((σ, `)→ (σ′, `′); x)e−βV (x,σ) = r((σ′, `′)→ (σ, `); x)e−βV (x,σ′)

(33)
for x ∈ D`(σ) ∩ D`′(σ

′)
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Spin-Diffusion Further Approximations

State Space Approximation

V (x,�)V (x,�0)

D1(�
0)

D1(�) D2(�)

D2(�
0)

xD3(�)

D3(�
0)

Enumerating all neighboring basins for (σ, `)→ (σ′, `′) is
computationally exhausting

Focus on the spin exchange – restrict set of kMC moves

Assume: Given (σ, `) for each σ′, we can only go to the `′ such that
D`′(σ

′) contains the minimum of D`(σ)

` = `(σ) and the initial conditions:

v̇0 =
∑
σ′

Eµ̌`(•|σ)[r((σ, `)→ (σ′, `′); x)](v0(σ′, `′, t)− v0(σ, `, t))

(34)

Furthermore, σ′ = σij , a spin exchange between j ∈ Ni for each i .
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Spin-Diffusion Further Approximations

Reaction Rates and Mean Field Approximations

tanh reaction rates:

r(σ → σij ; x) = τ−1
{

1
2 −

1
2 tanh

(
β
2 ∆ijV (x,σ)

)}
, (35)

Assume mean field approximations are valid, the ensemble averaged
evolution of E[σi ] is approximated by

d

dt
si =

1

2
τ−1

∑
j∈Ni

(sj − si )− (1− si sj) tanh

(
β

∆ij V̌
(`(s))(s)

sj − si

)
. (36)

with atomic sites distributed according to x(t) ∼ µ̌`(s)(• | s)
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Spin-Diffusion Comparison with DMD

DMD vs. Spin-Diffusion

d

dt
si =

1

2
τ−1

∑
j∈Ni

(sj − si )− (1− si sj) tanh

(
β

∆ij V̌
(`(s))(s)

sj − si

)
(37)

vs.

d

dt
si = β−1kc

∑
j∈Ni

arctanh(sj)− arctanh(si )− β
∆ij Ṽ (s,X, k)

sj − si

+ βJ̃ij(sj − si ).

(38)

In a high temperature, near equilibrium, limit, (si ∼ 0) these agree if

V̌ `(s) ≈ Ṽ (s,X, k), V̌ `(sij) ≈ Ṽ (sij ,X, k) (39)

kc ≈ 1
2βτ

−1 (40)
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Spin-Diffusion Comparison with DMD

Connecting Spin-Diffusion to DMD

Fast Process – Mechanical Relaxation

(X, k) ∈ argminR(ν̃||ν), X = Eµ̌`(•|σ)[x]

Both match local basin of V

Slow Process – Species Exchange/Migration

ṡi =
∑
j

f (si , sj , ∂siF , ∂sjF)

ṡi =
∑
j

E[(σj − σi )ř((σ, `(σ))→ (σij , `′(σ,σij)))]

f should approximate the averaged reaction rates
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Simulations
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Simulations

Chain Problem

x1 x2 xN�1 xN

x1 x2 xN�1 xN

Pin leftmost atom x1 = 0 with species σ1 = +1, and rightmost atom
is free to move with species σN = −1

Energetically favorable for species to segregate

Interatomic spacing parameters for A− A, A− B, B − B bonds leads
to mechanical deformation
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Simulations

Mean Field Models vs. DMD
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Top: Approximations of Spin-Diffusion, sharper interfaces, shorter
nucleation

Bottom: DMD, qualitatively similar
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Simulations

Mean Field Models vs. DMD, Continued
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Qualitatively similar
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Summary & Acknowledgements

Mean Field Models vs. Scale Separated Spin Diffusion
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Qualitatively similar – disagreement from short range interactions &
mean field approximation

Equilibrium (large t) behaivor is consistent
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Summary & Acknowledgements

Key Assumptions & Approximations for Spin-Diffusion

Coupled Spin-Diffusion process, (x(t),σ(t))

Assume well defined time scale separation between processes with
respect to QSD idealization

Low temperature approxiatmion to make reaction rates satisfying
detailed balance tractable

State space approximation restricts kMC moves to spin exchanges

Modelling assumption of reaction rates

Mean field approximations of true master equation
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Summary & Acknowledgements

Interpretation of Spin-Diffusion

Off-Lattice Sites can move, quasistatically

Finite Temperature β present in reaction rates and we are not assumed to
be at the quenched configuration

Restricted kMC Only allowed KMC moves are species exchanges

Mean Field An approximate ensemble average to spin-diffusion is made
to obtain closed ODEs
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Summary & Acknowledgements

Remarks & Open Problems

Underlying spin-diffusion can be used in place of MD, and this can be
approximated with mean field

Comparison should be in terms of observables

Given physically motivated reaction rates, the approximate
spin-diffusion model has closer connections to MD than DMD models

VG can be used in place of QSD for computational efficiency

Comparisons of spin-diffusion to its approximate ensemble average
remains to be explored

Substitution of spin-diffusion approximations of the dynamics remains
to be implemented in DMD codes.

Simpson (Drexel) DMD–UBC 2017 July 31, 2017 44 / 45



Summary & Acknowledgements

Remarks & Open Problems

Underlying spin-diffusion can be used in place of MD, and this can be
approximated with mean field

Comparison should be in terms of observables

Given physically motivated reaction rates, the approximate
spin-diffusion model has closer connections to MD than DMD models

VG can be used in place of QSD for computational efficiency

Comparisons of spin-diffusion to its approximate ensemble average
remains to be explored

Substitution of spin-diffusion approximations of the dynamics remains
to be implemented in DMD codes.

Simpson (Drexel) DMD–UBC 2017 July 31, 2017 44 / 45



Summary & Acknowledgements

Remarks & Open Problems

Underlying spin-diffusion can be used in place of MD, and this can be
approximated with mean field

Comparison should be in terms of observables

Given physically motivated reaction rates, the approximate
spin-diffusion model has closer connections to MD than DMD models

VG can be used in place of QSD for computational efficiency

Comparisons of spin-diffusion to its approximate ensemble average
remains to be explored

Substitution of spin-diffusion approximations of the dynamics remains
to be implemented in DMD codes.

Simpson (Drexel) DMD–UBC 2017 July 31, 2017 44 / 45



Summary & Acknowledgements

Acknowledgements

Collaborators B. Farmer (Drexel/UMN) M. Luskin (UMN), P. Plechac (U.
Delaware), D. Srolovitz (U. Penn)

Funding US DOE DE-SC0012733

Publications Luskin, Simpson, Srolovitz, SIAP (2016)

Preprints http://arxiv.org/abs/1506.02569

http://arxiv.org/abs/1702.01469

http://www.math.drexel.edu/~simpson/

Simpson (Drexel) DMD–UBC 2017 July 31, 2017 45 / 45

http://arxiv.org/abs/1506.02569
http://arxiv.org/abs/1702.01469
http://www.math.drexel.edu/~simpson/

	Overview
	Metastability & Computation
	DMD Models
	Challenges & Goals

	Framework & Background
	Common Structure
	DMD Model

	Spin-Diffusion
	Scale Separation
	Further Approximations
	Comparison with DMD

	Simulations
	Summary & Acknowledgements

